降维
文章平均质量分 66
Jender_Sean
这个作者很懒,什么都没留下…
展开
-
鲁棒主成分分析RPCA
WHY?传统的PCA算法对于噪音敏感,于是有人提出了RPCA将一个含有稀疏噪声的数据矩阵分解为低秩矩阵和稀疏噪音矩阵两部分。WHAT?HOW?CODEimport numpy as npimport pandas as pd''' Y数据矩阵 alpha 步长 pre 收敛的精度 r 低秩为多少'''def RPCA(Y,alpha=0.75,pre=0.117,r=245): m,n =Y.shape #先对Y进行奇异值分解,选取前r个奇异值与前r个原创 2021-10-11 16:30:13 · 2414 阅读 · 1 评论 -
多维尺度分析MDS详解
一 概述MDS的初衷是将图结构中的距离在空间的一种表示。例如,已知几个城市的距离,但是不知道城市的坐标,那么MDS就能通过距离矩阵转换成空间坐标向量来近似描述距离。更重要地是,MDS可以更广泛地应用于任意类型的数据实体相似度或距离描述在低维空间的表示。多维尺度分析MDS的基本思想:用低维空间Rk (k<n)的n个点去重新标度高维空间Rn 的n个实体间的距离或者相似度。将高维空间的n个研究对象简化到低维空间处理,并且保留高维空间中n个对象较高的相似度。MDS是主要分为两类:度量化多维尺度分析(经典原创 2021-04-19 14:55:18 · 6626 阅读 · 1 评论