本程序是基于mnist手写数据集,利用softmax函数来预测准确率,程序进行了详细注释。
tensorboard是一个强大的可视化工具,可以看出构建的网络的结构。它支持GRAPHS,SCALARS, DISTRIBUTIONS, HISTOGRAMS等可视化。
程序如下:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
# 参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean) # 平均值
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev) # 标准差
tf.summary.scalar('max', tf.reduce_max(var)) # 最大值
tf.summary.scalar('min', tf.reduce_min(var)) # 最小值
tf.summary.histogram('histogram', var) # 直方图
# 命名空间
with tf.name_scope('input'):
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y = tf.placeholder(tf.float32, [None, 10], name='y-input')
with tf.name_scope('layer'):
# 创建一个简单的神经网络
with tf.name_scope('wights'):
W = tf.Variable(tf.zeros([784, 10]), name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]), name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x, W) + b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
# 二次代价函数
# loss = tf.reduce_mean(tf.square(y-prediction))
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
tf.summary.scalar('loss', loss)
with tf.name_scope('train'):
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax返回一维张量中最大的值所在的位置
with tf.name_scope('accuracy'):
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
# 合并所有的summary
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/', sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# merged返回值存入summary中
summary, _ = sess.run([merged, train_step], feed_dict={x: batch_xs, y: batch_ys})
# 记录summary和epoch到文件中
writer.add_summary(summary, epoch)
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
tensboard不会使用的请看此篇文章:如何使用tensorboard
tensorboard可视化结果如下:
GRAPHS(模型流图):
DISTRIBUTION:
HISTOGRAMS(直方图):
自己可以运行一下代码,视觉可视化让人兴奋不已,tensorflow太厉害了。