【洛谷】P10938 Vani和Cl2捉迷藏 的题解

【洛谷】P10938 Vani和Cl2捉迷藏 的题解

洛谷传送门

题解

噢噢噢噢哦哦哦,神奇网络流,有点像 Floyd

在图上选取若干条互不相交的路径,并让这些路径不重不漏覆盖到每一个点。符合上述要求且总数最小的方案就叫做原图的最小路径点覆盖,图中每个节点均只被覆盖一次。而最小重复路径点覆盖则是允许选取的路径相交,即某个点至少被覆盖一次。

在二分图中,最小路径点覆盖的路径条数等于总点数减去最大匹配数;最小路径重复点覆盖的数量则需要先求传递闭包(有点类似 Floyd),再计算最小路径点覆盖得出答案,输出即可。

代码

#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
	inline int read() {
		register int x = 0, f = 1;
		register char c = getchar();
		while (c < '0' || c > '9') {
			if(c == '-') f = -1;
			c = getchar();
		}
		while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
		return x * f;
	}
	inline void write(int x) {
		if(x < 0) putchar('-'), x = -x;
		if(x > 9) write(x / 10);
		putchar(x % 10 + '0');
		return;
	}
}
using namespace fastIO;
bool cl[225][225], vis[225];
int match[225], n, m;
bool dfs(int x) {
	for(int i = 1; i <= n; i ++) {
		if(cl[x][i] && !vis[i]) {
			vis[i] = true;
			if(!match[i] || dfs(match[i])) {
				match[i] = x;
				return true;
			}
		}
	}
	return false;
}
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	n = read(), m = read();
	for(int i = 1; i <= m; i ++) {
		int x = read(), y = read();
		cl[x][y] = 1;
	}
	for(int i = 1; i <= n; i ++) {
		cl[i][i] = 1;
	}
	for(int k = 1; k <= n; k ++) {
		for(int i = 1; i <= n; i ++) {
			for(int j = 1; j <= n; j ++) {
				cl[i][j] |= cl[i][k] && cl[k][j];
			}
		}
	}
	for(int i = 1; i <= n; i ++) {
		cl[i][i] = 0;
	}
	int ans = n;
	for(int i = 1; i <= n ; i ++) {
		memset(vis, 0, sizeof(vis));
		ans -= dfs(i);
	}
	write(ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值