【洛谷】P10938 Vani和Cl2捉迷藏 的题解
题解
噢噢噢噢哦哦哦,神奇网络流,有点像 Floyd
在图上选取若干条互不相交的路径,并让这些路径不重不漏覆盖到每一个点。符合上述要求且总数最小的方案就叫做原图的最小路径点覆盖,图中每个节点均只被覆盖一次。而最小重复路径点覆盖则是允许选取的路径相交,即某个点至少被覆盖一次。
在二分图中,最小路径点覆盖的路径条数等于总点数减去最大匹配数;最小路径重复点覆盖的数量则需要先求传递闭包(有点类似 Floyd),再计算最小路径点覆盖得出答案,输出即可。
代码
#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
inline int read() {
register int x = 0, f = 1;
register char c = getchar();
while (c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
inline void write(int x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
return;
}
}
using namespace fastIO;
bool cl[225][225], vis[225];
int match[225], n, m;
bool dfs(int x) {
for(int i = 1; i <= n; i ++) {
if(cl[x][i] && !vis[i]) {
vis[i] = true;
if(!match[i] || dfs(match[i])) {
match[i] = x;
return true;
}
}
}
return false;
}
int main() {
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
n = read(), m = read();
for(int i = 1; i <= m; i ++) {
int x = read(), y = read();
cl[x][y] = 1;
}
for(int i = 1; i <= n; i ++) {
cl[i][i] = 1;
}
for(int k = 1; k <= n; k ++) {
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j ++) {
cl[i][j] |= cl[i][k] && cl[k][j];
}
}
}
for(int i = 1; i <= n; i ++) {
cl[i][i] = 0;
}
int ans = n;
for(int i = 1; i <= n ; i ++) {
memset(vis, 0, sizeof(vis));
ans -= dfs(i);
}
write(ans);
return 0;
}