这个专栏计划开坑更完 Measure Theory by Claudio Landim的 Lecture Notes。此为第一个视频的笔记。用一个反例阐述了学习测度论的必要性。
引入
首先考虑这样一个问题:我们如何测量 R \mathbb{R} R的子集的长度?直观地,如果这个子集为 ( a , b ] (a, b] (a,b],那么用 b − a b-a b−a来定义这个区间的长度似乎是一个非常合理的想法。
进一步的,我们对这个「测量函数」有如下的期待:
- 这个函数的值域应该大于等于0
- 特别地,对于区间 ( a , b ] (a, b] (a,b],这个测量函数会告诉我们它的长度为 b − a b-a b−a
- 对于任何一个集合,把它向左或者向右移动一定的距离,这个集合在测量函数下的值应该不发生变化
- 假设我们有几个不相交的集合,它们的并集的「长度」应该等于它们各自的「长度」之和。而且,似乎这一想法可以自然地拓展到「可数个不相交的」集合。
用数学的语言来描述我们理想中的测量函数,它应该满足下述条件:
- λ : P ( R ) → { ∞ } ∪ R + \lambda: P(\mathbb{R}) \to \{ \infty\} \cup \mathbb{R}_+ λ:P(R)→{ ∞}∪R+, where P ( R ) P(\mathbb{R}) P(R) is the collection of all subset of R \mathbb{R} R
- λ ( ( a , b ] ) = b − a \lambda((a,b])=b-a λ((a,b])=b−a
- λ ( A + x ) = λ ( A ) \lambda(A + x) = \lambda(A) λ(A+x)=λ(A), where x ∈ R , A + x : = { y + x ∣ y ∈ A } x \in \mathbb{R}, A+x := \{y+x|y\in A\} x∈R,A+x:={ y+x∣y∈A}
- A i ∩ A j = ∅ , i ≠ j ⇒ λ ( ∑ i ≥ 1 A i ) = ∑ i ≥ 1 λ ( A i ) A_i\cap A_j =\empty, i\ne j \Rightarrow \lambda(\sum_{i\ge 1} A_i)=\sum_{i\ge 1}\lambda (A_i) Ai∩Aj=∅,i