In last lecture, we have shown we have a unique way of extending μ\muμ, σ\sigmaσ-additive defined in a semi-algebra S\mathscr{S}S to ν\nuν, σ\sigmaσ-additive defined in an algebra A(S)\mathcal{A}(\mathscr{S})A(S), algebra generated by S\mathscr{S}S
In this lecture, we will show how this could be extended uniquely to π\piπ, σ\sigmaσ-additive defined in a sigma-algebra F(S)\mathscr{F}(\mathscr{S})F(S)
Will Define π∗:S(Ω)→R+∪{
∞}\pi^*: \mathcal{S}(\Omega)\to \mathbb{R}_+\cup\{\infty\}π∗:S(Ω)→R+∪{
∞}
It is an outer measure: ∃\exists∃ M⊆S(Ω)\mathscr{M}\subseteq \mathcal{S}(\Omega)M⊆S(Ω) is a σ\sigmaσ-algebra and contains algbera A\mathcal{A}A, then π∗∣M\pi^*|_\mathscr{M}π∗∣M is σ\sigmaσ-additive, and π∗∣A=ν\pi^*|_\mathcal{A}=\nuπ∗∣A=ν
STEP1 DEFINE π∗:S(Ω)→R+∪{ ∞}\pi^*: \mathcal{S}(\Omega)\to \mathbb{R}_+\cup\{\infty\}π∗:S(Ω)→R+∪{ ∞} such that ∀A∈Ω,π∗(A):=inf{ Ei}∑i≥1ν(Ei)\forall A\in\Omega, \pi^*(A):=\inf_{\{E_i\}}\sum_{i\ge1}\nu(E_i)∀A∈Ω,π∗(A):=inf{ Ei}∑i≥1ν(Ei), where Ei∈A,A⊆∪iEiE_i\in\mathcal{A},A\subseteq\cup_i E_iEi∈A,A⊆∪iEi
DEF (Outer measure) μ:C⊆S(Ω)→R+∪{ ∞}\mu:\mathcal{C}\subseteq \mathcal{S}(\Omega)\to\mathbb{R}_+\cup \{\infty\}μ:C⊆S(Ω)→R+∪{ ∞} such that
- μ(∅)=0\mu(\empty)=0μ(∅)=0
- E⊆F∈C⇒μ(E)≤μ(F)E\subseteq F\in\mathcal{C}\Rightarrow \mu(E)\le\mu(F)E⊆F∈C⇒μ(E)≤μ(F)
- E,Ei∈C,E⊆∪Ei⇒μ(E)≤∑iμ(Ei)E, E_i\in\mathcal{C}, E\subseteq\cup E_i \Rightarrow\mu(E)\le\sum_i\mu(E_i)E,Ei∈C,E⊆∪Ei⇒μ(E)≤∑iμ(Ei)
CLAIM π∗\pi^*π∗ is an outer measure.
(1) π∗(∅)=0\pi^*(\empty)=0π∗(∅)=0
Note π∗(∅)≤ν(∅)=0\pi^*(\empty)\le\nu(\empty)=0π∗(∅)≤ν(∅)=0, as ∅⊆∅\empty\subseteq\empty∅⊆∅
On the other hand, inf{ Ei}∑i≥1ν(Ei)≥0\inf_{\{E_i\}}\sum_{i\ge1}\nu(E_i)\ge0inf{ Ei}∑i≥1ν(Ei)≥0
(2) E⊆F∈C⇒π∗(E)≤π∗(F)E\subseteq F\in\mathcal{C}\Rightarrow \pi^*(E)\le\pi^*(F)E⊆F∈C⇒π∗(E)≤π∗(F)
Any covering of F must be an covering of E
(3) E,Ei∈C,E⊆∪Ei⇒π∗(E)≤∑iπ∗(Ei)E, E_i\in\mathcal{C}, E\subseteq\cup E_i \Rightarrow \pi^*(E)\le\sum_i \pi^*(E_i)E,Ei∈C,E⊆∪Ei⇒π∗(E)≤∑iπ∗(Ei)
- WLOG assume π∗(Ei)<∞,∀i\pi^*(E_i) < \infty, \forall iπ∗(Ei)<∞,∀i
- π∗(Ei)=inf{ Hk},Ei∑k≥1ν(Hk)<∞\pi^*(E_i)=\inf_{\{H_k\}, E_i}\sum_{k\ge1} \nu(H_k) < \inftyπ∗(Ei)=inf{ Hk},Ei∑k≥1ν(Hk)<∞
Fix ϵ>0\epsilon > 0ϵ>0, ∀i,∃{ Hi,k}\forall i, \exists \{H_{i,k}\}∀i,∃{ Hi,k} such that ∪k{ Hi,k}⊇Ei\cup_k\{H_{i,k}\}\supseteq E_i∪k{ Hi,k}⊇Ei and ∑k≥1ν(Hi,k)≤π∗(Ei)+ϵ/2i\sum_{k\ge1} \nu(H_{i,k}) \le \pi^*(E_i)+\epsilon/2^i∑k≥1ν(Hi,k)≤π∗(Ei)+ϵ/2i
So E⊆∪iEi⊆∪i∪k{ Hi,k}E\subseteq \cup_i E_i \subseteq \cup_i\cup_k\{H_{i,k}\}E⊆∪iEi⊆∪i∪k{ Hi,k}, by def π∗(E)≤∑i∑kν(Hi,k)≤∑iπ∗(Ei)+ϵ\pi^*(E) \le \sum_i\sum_k\nu(H_{i,k})\le\sum_i \pi^*(E_i)+\epsilonπ∗(E)≤∑i∑kν(Hi,k)≤∑iπ∗(Ei)+ϵ
By arbitrariness of ϵ\epsilonϵ, we have proved π∗(E)≤∑iπ∗(Ei)\pi^*(E)\le\sum_i \pi^*(E_i)π∗(E)≤∑iπ∗(Ei)
STEP2 Define M\mathscr{M}M such that, ∀A∈M,∀E∈Ω,π∗(E)=π∗(E∩A)+π∗(E∩Ac)\forall A\in\mathscr{M}, \forall E\in \Omega, \pi^*(E) = \pi^*(E\cap A) + \pi^*(E \cap A^c)

本讲座介绍了如何将S上的σ-加性测度μ唯一扩展到A(S),即代数由S生成,进一步将其唯一扩展到F(S)上的σ-加性测度π。定义了外测度π∗,证明了π∗是外测度,且存在包含A的σ-代数M,使得π∗在M上是σ-加性的,同时在A上的π∗等于ν。此外,还讨论了π∗在M上的σ-可加性和其唯一性。
最低0.47元/天 解锁文章
1502

被折叠的 条评论
为什么被折叠?



