小于n的质数数量 --- 埃氏筛 (Eratosthenes)

问题

给定一个整数 n,请你找到小于等于它的所有质数数目。

下面给出几种不同复杂度的解法,难度依次递增。最出彩的是第三种该算法,由希腊数学家厄拉多塞(Eratosthenes)提出,称为厄拉多塞筛法,简称埃氏筛,可以在接近线性时间内解决问题。

Brutal Force O ( n 2 ) O(n^2) O(n2)

def primeNumbers(n):
	cnt = 0
	for i in range(1, n+1):
		if isPrime(i):
			cnt += 1
	return cnt 

def isPrime(m):
	if m == 2:
		return True
	for i in range(2, m):
		if m % i == 0:
			return False 
	return True

遍历所有小于 n的数 i。对于每个数检查它是否为质数,耗时 O(i)
因此一共耗时 O ( n 2 ) O(n^2) O(n2)

O ( n 1.5 ) O(n^{1.5}) O(n1.5)

def primeNumbers(n):
	cnt = 0
	for i in range(1, n+1):
		if isPrime(i):
			cnt += 1
	return cnt 

def isPrime(m):
	if m == 2:
		return True
	for i in range(2, sqrt(m)+1):
		if m % i == 0:
			return False 
	return True

遍历所有小于 n的数 i。对于每个数检查它是否为质数,耗时 O ( i ) O(\sqrt{i}) O(i )

(因为我们这次只检查 i能否被 j, j 小于等于 sqrt(i),因此将复杂度从 O ( n ) O(n) O(n)降低到了 O ( n ) O(\sqrt{n}) O(n )。这样做的理由是出于一个简单的 observation: 如果一个数可以被拆解成 p*q,并假设 p<=q,那么它一定可以被拆解成 q * p。而我们一旦检查了这个数能否被 p整除,那么就没有必要去检查这个数能否被 q整除了。因此只考虑 i \sqrt i i 就够了。)

因此一共耗时 O ( n 2 ) O(n^2) O(n2)

O ( n log ⁡ log ⁡ n ) O(n\log\log n) O(nloglogn)

这一算法由希腊数学家厄拉多塞(Eratosthenes)提出,称为厄拉多塞筛法,简称埃氏筛,可以在接近线性时间内解决问题。
这一算法基于一个简单的事实:一个数的倍数不可能是质数。因此,我们对于每一个数,都将它的倍数全部标记为「非质数」。

def primeNumbers(n):
	isPrime = [True] * (n+1)
	cnt = 0
	for i in range(2, n+1):
		if (isPrime[i] == False):
			continue
		cnt += 1
		# mark its multiples
		j = i * 2 
		while (j <= n):
			isPrime[j] = False
			j += i 
	return cnt	
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值