蓝桥杯【第十一届】【决赛】F皮亚诺曲线距离 + G出租车

题目地址

官网地址

F皮亚诺曲线距离

找规律的题目,应该有各种各样的方法来做

(代码写完才发现我的x,y和题目是反过来的qwq, 不过都一样)
(顺带吐槽一下,为啥不用写高精度就能过,题目里只是要求答案小于 1 0 18 10^{18} 1018 x 1 , x 2 , y 1 , y 2 x_1, x_2, y_1, y_2 x1,x2,y1,y2只要小于 3 100 3^{100} 3100就行了啊)不过不用写高精度我也就不写了

显然我们可以分别求两个点到原点的距离,然后相减即可。

我们发现,对于n阶皮亚诺曲线,它是由9个n-1阶皮亚诺曲线组合而成,我们可以把n-1阶皮亚诺曲线视为一个整体

我的做法是把矩阵分成4种模式, 起点的x坐标小于终点则第一位为0,起点的y坐标小于终点则第二位0

如图
红色箭头所在的矩阵为0型,绿色为1型,橙色为3型

通过判断n阶曲线的类型,就知道对应的格子之前有几个n-1阶曲线,然后再继续做相应的n-1阶曲线即可

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int model[4][3][3] = { //四种模式的遍历顺序
    {
        {1, 6, 7},
        {2, 5, 8},
        {3, 4, 9}
    },
    {
        {7, 6, 1},
        {8, 5, 2},
        {9, 4, 3}
    },
    {
        {3, 4, 9},
        {2, 5, 8},
        {1, 6, 7}
    },
    {
        {9, 4, 3},
        {8, 5, 2},
        {7, 6, 1}
    }
};
const int nxt[4][3][3] = { // 在该模式的该位置的下一阶曲线的类型
    {
        {0, 2, 0},
        {1, 3, 1},
        {0, 2, 0}
    },
    {
        {1, 3, 1},
        {0, 2, 0},
        {1, 3, 1}
    },
    {
        {2, 0, 2},
        {3, 1, 3},
        {2, 0, 2}
    },
    {
        {3, 1, 3},
        {2, 0, 2},
        {3, 1, 3}
    }
};
LL k, x_1, y_1, x_2, y_2;
LL calc(LL x, LL y) {
    int K = 1, mod = 0;
    LL ret = 0, w = 1;
    while (w * 3 < max(x, y) + 1) ++K, w *= 3;
    while (K--) {
        int i = 0, j = 0;
        while (x >= w * i) ++i;
        while (y >= w * j) ++j;
        --i, --j;
        ret += (model[mod][i][j] - 1) * w * w;
        mod = nxt[mod][i][j];
        x -= w * i, y -= w * j, w /= 3;
    }
    return ret;
}
int main() {
    cin >> k;
    cin >> y_1 >> x_1;
    cin >> y_2 >> x_2;
    LL A = calc(x_1, y_1);
    LL B = calc(x_2, y_2);
    cout << (A > B ? A - B : B - A);
    return 0;
}

G 出租车

我把每个路口拆成4个点,表示车开到如图数字所在位置所需的时间

然后跑最短路就可以了

我看到网上有一个更好的建图,直接用路的中点来建边比拆点来得容易多了

#include <bits/stdc++.h>
using namespace std;

inline int read() {
    int ret = 0, f = 1; char ch = getchar();
    for (; !isdigit(ch); ch = getchar()) if (ch == '-') f = -f;
    for (; isdigit(ch); ch = getchar()) ret = ret * 10 + ch - 48;
    return ret * f;
}

const int maxn = 105;
const int xx[4] = { -1, 0, 1, 0 };
const int yy[4] = { 0, 1, 0, -1 };
const double INF = 10000000000005ll;

bool vis[maxn][maxn][4];
double T = 0, dis[maxn][maxn][4];
struct node { int x, y, f; } a[6];
inline bool operator ==(node a, node b) { return a.x == b.x && a.y == b.y; }

struct Node { double d; node x; };
inline bool operator <(Node a, Node b) { return a.d < b.d; }
inline bool operator >(Node a, Node b) { return a.d > b.d; }

int N, M, Q, h[maxn], w[maxn], g[maxn][maxn], r[maxn][maxn];

inline double wait(node u, double tim) {
    tim += T;
    tim -= floor(tim / (g[u.x][u.y] + r[u.x][u.y])) * (g[u.x][u.y] + r[u.x][u.y]);
    if (u.f & 1) { // 东西向 初始红
        if (abs(tim - g[u.x][u.y]) < 1e-6) return 0;
        if (tim > g[u.x][u.y]) return 0;
        else return g[u.x][u.y] - tim;
    }
    else {
        if (abs(tim - g[u.x][u.y]) < 1e-6) return r[u.x][u.y];
        if (tim < g[u.x][u.y]) return 0;
        else return r[u.x][u.y] + g[u.x][u.y] - tim;
    }
}

inline double getDistance(node a, node b) {
    return (a.x == b.x) ? abs(w[a.y] - w[b.y]) : abs(h[a.x] - h[b.x]);
}

double Calc() {
    if (a[0] == a[2] && a[1] == a[3]) return 0;
    for (int i = 1; i <= N; ++i)
        for (int j = 1; j <= M; ++j)
            for (int k = 0; k < 4; ++k) {
                dis[i][j][k] = INF;
                vis[i][j][k] = 0;
            }
    a[1].f = (a[0].x == a[1].x) ? ( (a[1].y > a[0].y) ? 3 : 1 ) : ( (a[1].x > a[0].x) ? 0 : 2 );
    dis[a[1].x][a[1].y][a[1].f] = getDistance(a[0], a[1]) * 0.5;
    priority_queue < Node, vector<Node>, greater<Node> > Q;
    Node fuck; // 因为官网的c++不支持 Q.push({ dis[a[1].x][a[1].y][a[1].f], a[1] });
    //所以临时改的,言辞比较激烈
    fuck.d = dis[a[1].x][a[1].y][a[1].f];
    fuck.x = a[1];
    Q.push(fuck);
    while (!Q.empty()) {
        node u = Q.top().x, v;
        Q.pop();
        if (vis[u.x][u.y][u.f]) continue;
        vis[u.x][u.y][u.f] = 1;
        // 掉头
        v.x = u.x + xx[u.f], v.y = u.y + yy[u.f], v.f = (u.f + 2) % 4;
        if (v.x >= 1 && v.x <= N && v.y >= 1 && v.y <= M) {
            if (dis[v.x][v.y][v.f] > dis[u.x][u.y][u.f] + getDistance(u, v)) {
                dis[v.x][v.y][v.f] = dis[u.x][u.y][u.f] + getDistance(u, v);
                fuck.d = dis[v.x][v.y][v.f];
                fuck.x = v;
                Q.push(fuck);
            }
        }
        // 右转
        v.x = u.x + xx[(u.f + 3) % 4], v.y = u.y + yy[(u.f + 3) % 4], v.f = (u.f + 1) % 4;
        if (v.x >= 1 && v.x <= N && v.y >= 1 && v.y <= M) {
            if (dis[v.x][v.y][v.f] > dis[u.x][u.y][u.f] + getDistance(u, v)) {
                dis[v.x][v.y][v.f] = dis[u.x][u.y][u.f] + getDistance(u, v);
                fuck.d = dis[v.x][v.y][v.f];
                fuck.x = v;
                Q.push(fuck);
            }
        }
        // 左转
        double t = wait(u, dis[u.x][u.y][u.f]);
        v.x = u.x + xx[(u.f + 1) % 4], v.y = u.y + yy[(u.f + 1) % 4], v.f = (u.f + 3) % 4;
        if (v.x >= 1 && v.x <= N && v.y >= 1 && v.y <= M) {
            if (dis[v.x][v.y][v.f] > dis[u.x][u.y][u.f] + getDistance(u, v) + t) {
                dis[v.x][v.y][v.f] = dis[u.x][u.y][u.f] + getDistance(u, v) + t;
                fuck.d = dis[v.x][v.y][v.f];
                fuck.x = v;
                Q.push(fuck);
            }
        }
        // 直行
        t = wait(u, dis[u.x][u.y][u.f]);
        v.x = u.x + xx[(u.f + 2) % 4], v.y = u.y + yy[(u.f + 2) % 4], v.f = u.f;
        if (v.x >= 1 && v.x <= N && v.y >= 1 && v.y <= M) {
            if (dis[v.x][v.y][v.f] > dis[u.x][u.y][u.f] + getDistance(u, v) + t) {
                dis[v.x][v.y][v.f] = dis[u.x][u.y][u.f] + getDistance(u, v) + t;
                fuck.d = dis[v.x][v.y][v.f];
                fuck.x = v;
                Q.push(fuck);
            }
        }
    }
    a[3].f = (a[2].x == a[3].x) ? ( (a[3].y > a[2].y) ? 3 : 1 ) : ( (a[3].x > a[2].x) ? 0 : 2 );
    return dis[a[3].x][a[3].y][a[3].f] - getDistance(a[2], a[3]) * 0.5;
}

int main() {
    N = read(), M = read();
    for (int i = 2; i <= N; ++i) h[i] = read();
    for (int i = 2; i <= M; ++i) w[i] = read();
    for (int i = 1; i <= N; ++i)
        for (int j = 1; j <= M; ++j) g[i][j] = read();
    for (int i = 1; i <= N; ++i)
        for (int j = 1; j <= M; ++j) r[i][j] = read();
    a[0].x = read(), a[0].y = read(), a[1].x = read(), a[1].y = read();
    a[4] = a[0], a[5] = a[1];
    for (Q = read(); Q--; ) {
        a[2].x = read(), a[2].y = read();
        a[3].x = read(), a[3].y = read();
        T += Calc();
        a[0] = a[2], a[1] = a[3];
        a[2].x = read(), a[2].y = read();
        a[3].x = read(), a[3].y = read();
        T += Calc();
        a[0] = a[2], a[1] = a[3];
    }
    a[2] = a[4], a[3] = a[5];
    T += Calc();
    printf("%.1lf", T);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值