题目描述
一次舞会有n个男孩和n个女孩。每首曲子开始时,所有男孩和女孩恰好配成n对跳交谊舞。每个男孩都不会和同一个女孩跳两首(或更多)舞曲。有一些男孩女孩相互喜欢,而其他相互不喜欢(不会”单向喜欢“)。每个男孩最多只愿意和k个不喜欢的女孩跳舞,而每个女孩也最多只愿意和k个不喜欢的男孩跳舞。给出每对男孩女孩是否相互喜欢的信息,舞会最多能有几首舞曲?
输入输出格式
输入格式:
第一行包含两个整数n和k。以下n行每行包含n个字符,其中第i行第j个字符为’Y’当且仅当男孩i和女孩j相互喜欢。
输出格式:
仅一个数,即舞曲数目的最大值。
思路
虚线表示要么不喜欢和不喜欢连,要么喜欢和喜欢连,限制为1。
二分x,当流量为x*N时可行(x为能跳x次舞)。
代码
#include<queue>
#include<cstdio>
#include<string>
#include<cstring>
using namespace std;
const int maxn=1e5+5,INF=0x3f3f3f3f;
queue <int> Q;
int N,K,L,R,S,T,ans,a[55][55];
int son[maxn],flw[maxn],nxt[maxn],lnk[maxn],dep[maxn],tot;
inline char read() {
for (char ch=getchar(); ; ch=getchar())
if (ch=='Y'||ch=='N') return ch;
}
inline void add_edge(int x,int y,int f) {
son[tot]=y,flw[tot]=f,nxt[tot]=lnk[x],lnk[x]=tot++;
son[tot]=x,flw[tot]=0,nxt[tot]=lnk[y],lnk[y]=tot++;
}
bool bfs() {
memset(dep,0,sizeof dep),dep[S]=1,Q.push(S);
while (!Q.empty()) {
int u=Q.front();Q.pop();
for (int k=lnk[u]; ~k; k=nxt[k]) if (dep[son[k]]==0&&flw[k]>0)
dep[son[k]]=dep[u]+1,Q.push(son[k]);
}
return dep[T];
}
int dfs(int x,int flow) {
if (x==T||flow==0) return flow;
int cnt=0;
for (int k=lnk[x]; ~k&&flow; k=nxt[k]) if (dep[son[k]]==dep[x]+1&&flw[k]) {
int d=dfs(son[k],min(flow,flw[k]));
if (d<=0) continue;
flw[k]-=d,flw[k^1]+=d,cnt+=d,flow-=d;
}
if (cnt==0) dep[x]=0;
return cnt;
}
bool check(int x) {
int ret=0;
memset(lnk,-1,sizeof lnk),tot=S=0,T=4*N+1;
for (int i=1; i<=N; i++)
add_edge(S,i,x),add_edge(i,i+N+N,K),
add_edge(i+N,T,x),add_edge(i+N*3,i+N,K);
for (int i=1; i<=N; i++)
for (int j=1; j<=N; j++) a[i][j]?add_edge(i,j+N,1):add_edge(i+N+N,j+N*3,1);
while (bfs()) ret+=dfs(S,INF);
return ret==x*N;
}
int main() {
scanf("%d%d",&N,&K);
for (int i=1; i<=N; i++)
for (int j=1; j<=N; j++) a[i][j]=read()=='Y';
ans=0,L=1,R=N;
while (L<=R) {
int mid=(L+R)>>1;
if (check(mid)) ans=mid,L=mid+1;
else R=mid-1;
}
printf("%d\n",ans);
return 0;
}