RetinaNet论文

1、引入

摘要:本文是2017年何凯明 ICCV最佳学生论文奖。论文认为单阶段目标检测低于两阶段的原因是正负样本不均衡,导致模型在训练时偏向负样本,且过多的简单负样本使模型退化。为了降低影响,提出focal loss损失函以及检测网络结构,提升了性能。
优点:无论是精度还是速度都是全面超越。
创新点

  1. 提出focal loss损失函苏。
  2. 提出目标检测网络结构。
  3. 可以用于多标签分类(损失函数使用的是binary_cross_entropy_with_logits)。

2、网络结构

如图2-1所示。

  1. 使用多尺度特征金字塔网络。
  2. 分类与回归使用两个子网络,网络结构相同但不共享参数。

 图2-1 网络结构
图2-1 网络结构

3、损失函数

改编交叉熵损失函数。
F L ( p t ) = − α t ( 1 − p t ) γ l o g ( p t ) FL(p_t)=-\alpha _t(1-p_t)^\gamma log(p_t) FL(pt)=αt(1pt)γlog(pt)

  1. α t \alpha_t αt是系数,有利于提高精度。
  2. 损失函数使用的是binary_cross_entropy_with_logits,用于多标签分类。

4、参数设置

  1. 损失函数: α ∈ [ 0.25 , 0.27 ] , \alpha\in [0.25,0.27], α[0.25,0.27],本文设置 α = 0.25 , γ = 2 \alpha =0.25,\gamma=2 α=0.25,γ=2
  2. anchor scales × \times ×aspects=6/9
  3. 重要
    因此正负样本不平衡,为了使模型训练前期保持稳定。将除了分类子网络最后一层,其余层w设为u=0, σ = 0.01 \sigma =0.01 σ=0.01的高斯分布,b=0。最后一层为了使每一个anchor为前景的概率都为 π \pi π。因此w设为u=0, σ = 0.01 \sigma =0.01 σ=0.01的高斯分布,b设为 − l o g ( ( 1 − π ) / π ) -log((1-\pi)/\pi) log((1π)/π)。b的推导:输出概率使用逻辑回归函数即 1 1 + e − x \cfrac 1 {1+e^{-x}} 1+ex1。本文中将 π \pi π设为0.01,思想是增加正样本的损失值。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值