《空间数据库原理与方法》笔记/期末复习资料(重点课后习题)

目录

1. 空间数据和空间数据库有哪些主要特征?

1.1. 空间数据的主要特征

1.1.1. 时空特征

1.1.2. 多维特征

1.1.3. 多尺度特征

1.1.4. 海量数据特征

1.2. 空间数据库的主要特征

1.2.1. 综合抽象特征

1.2.2. 非结构化特征

1.2.3. 分类编码特征

1.2.4. 复杂性与多样性特征

2. 空间数据库与传统数据库相比有何差异?

2.1. 信息描述差异

2.2. 数据管理差异

2.3. 数据操作差异

2.4. 数据更新差异

2.5. 服务应用差异

3. 空间数据库有哪些主要作用?目前空间数据库还存在哪些主要问题?

3.1. 空间数据库的主要作用

3.1.1. 空间数据处理与更新

3.1.2. 海量数据存储与管理

3.1.3. 空间分析与决策

3.1.4. 空间信息交换与共享

3.2. 目前空间数据库存在的主要问题

3.2.1. 数据共享问题

3.2.2. 数据“瓶颈”问题

3.2.3. 数据安全问题

4. 数据库设计的基本过程分为哪几个阶段?

4.1. 需求分析

4.2. 概念结构设计

4.3. 逻辑结构设计

4.4. 物理结构设计

4.5. 数据库实施

4.6. 数据库运行与维护

5. 合并分 E-R 图时需要解决的冲突有哪几类?

5.1. 属性冲突

5.2. 命名冲突

5.3. 结构冲突

6. 试述把 E-R 图转换为关系模型所依据的原则。

7. 数据库实施和维护阶段的主要工作是什么?

7.1. 数据库实施阶段的主要工作

7.1.1. 建立实际的数据库结构

7.1.1.1. 数据库模式与子模式,以及数据库空间等的描述

7.1.1.2. 数据库完整性描述

7.1.1.3. 数据库安全性描述

7.1.1.4. 数据库物理存储参数描述

7.1.2. 数据加载

7.2. 数据库维护阶段的主要工作

7.2.1. 对数据库性能的监测和改善

7.2.2. 数据库的转储和恢复

7.2.3. 数据库的安全性、完整性控制

7.2.4. 数据库的重组(织)与重构(造)

8. 简述空间数据库建库的主要内容。

8.1. 资料准备和预处理

8.2. 数据采集

8.3. 数据处理

8.4. 空间数据建库


1. 空间数据和空间数据库有哪些主要特征?

1.1. 空间数据的主要特征

1.1.1. 时空特征

时空特征指的是描述地理空间中事物位置和运动状态随时间变化的特征。这包括事物在空间中的位置、速度和加速度等运动状态,以及这些状态随时间的变化。对于空间数据而言,时空特征是非常重要的,因为它们提供了地理现象在时空维度上的全面描述。时空特征的分析可以帮助我们理解事物的运动规律、趋势和变化。

(通过大量研究,认为地学信息具有多维结构,一般由空间、属性和时间三部分构成,那么对其进行建模就是对空间、属性和时间三者的提问域和答案域都要作出回答。空间数据的空间特性是指空间实体的空间位置及其与其他空间实体的空间关系,指明地物在地理空间中的位置,用于回答 "Where" 提问。空间位置可以用绝对空间位置和相对空间位置来表示。绝对空间位置用来表示地物本身的地理位置,通常用笛卡儿坐标、地理经纬坐标、空间直角坐标 (x,y,x)、平面直角坐标和极坐标等来表示地理空间实体在一定的坐标参考系中的空间位置。相对空间位置用来表示多个地物之间的位置相互关系,通过距离和方向描述相对于其他参照系或地物的空间位置,如某观测站位于某高地 135° 方向 500m 处。空间关系则是地理空间实体之间存在的一些具有空间特性的关系,如拓扑关系、顺序关系和度量关系等。空间特征是空间数据最基本的特征,空间数据记录了地理空间实体对象的空间分布位置和几何形状等空间信息,所以在使用空间数据时首先需要考虑的就是空间特征。属性特性是指地学现象的数量、质量和分类等属性信息,包括用来描述地物的自然或人文属性的定性或定量指标的成分,用于回答 “What” 和 “How” 提问。可以用名义量、顺序量、间隔或比率来表示。例如,表述一个城镇居民点,若仅有位置坐标 (x,y),那只是一个几何点,要构成居民点的地理空间数据,还需要经济(人口、产值等)、社会(就业率等)、资源和环境(污染指数等)等属性数据。时态特性指地理数据采集或地理现象发生的时刻或时段,这部分数据称为时态特征数据或时态数据。同一地物的多时段数据,可以动态地表现该地物的发展变化。时态特征数据可以按时间尺度划分为短期(如地震、洪水、霜冻)、中期(如土地利用、作物估产)、长期(如城市化、水土流失)和超长期(如地壳变动、气候变化)等类型。)

1.1.2. 多维特征

多维特征指的是空间数据具有多个维度的特征。在地理信息系统(GIS)和空间数据分析中,空间数据往往涉及到多个维度的信息,如地理坐标、高度、温度、湿度、人口密度等。通过对多维特征的分析,我们可以更全面地理解空间数据所包含的信息,揭示不同维度之间的关联和规律。

(地理空间数据具有多维结构的特征。地理空间实体或地理现象本身具有各种性质,空间目标的属性特征也称为主题、专题,是与地理空间实体相联系的、具有地理意义的数据和变量,用于表达实体本质特征和对实体的语义定义,一般分为定性(如类型、名称、特征值)和定量(如数量、等级)两种。属性之间的相关关系反映实体间的分类分级语义关系,主要体现为属性多级分类体系中的从属关系、聚类关系和相关关系。地理空间数据不仅能描述空间三维和时间维,也可以表现空间目标的属性以及数据不同的测量方法、不同来源、不同载体等多维信息,实现多专题的信息记录。例如,在一个坐标位置上、既包括地理位置、海拔高度、气候、地貌和土壤等自然地理特征、也具有相应的社会经济信息如行政界线、人口、产量、交通等。此外,一些空间对象或地理目标(如河流)同时又作为其他空间目标的分界线,也是空间数据多重属性的表现。在进行空间数据分析过程中,要重视并充分考虑地理空间数据的多维结构及其对空间关系的影响,为地理系统的综合研究提供技术支持。)

1.1.3. 多尺度特征

多尺度特征指的是空间数据在不同空间尺度上呈现出不同的特征。地理空间具有多种尺度特征,从微观的点线面到宏观的区域和全球范围都可能涉及不同的空间尺度。多尺度特征的分析可以帮助我们理解地理现象在不同尺度下的表现形式,揭示其内部结构和相互作用关系。

(尺度是空间数据的重要特征之一。空间数据的多尺度特征可从空间多尺度和时间多尺度两个方面进行理解。正是空间数据的多尺度特征,导致空间数据的综合难度加大,不利于数据管理和共享。地球系统是由各种不同级别子系统组成的复杂巨系统,各个级别的子系统在空间规模和时间长短方面存在很大差异,而且由于空间认知水平、精度和比例尺等的不同,地理实体的表现形式也不相同,因此多尺度性成为地理空间数据的重要特征。在空间数据中多尺度特征包括空间多尺度和时间多尺度两个方面。空间多尺度是指空间范围大小或地球系统中各部分规模的大小,可分为不同的层次;时间多尺度指的是地学过程或地理特征有一定的自然节律性,其时间周期长短不一。空间多尺度特征表现在数据综合上,数据综合类似于数据抽象或制图概括,是指数据根据其表达内容的规律性、相关性和数据自身规则,可以由相同的数据源形成再现不同尺度规律的数据,它包括空间特征和属性的相应变化。多尺度的地理空间数据反映了地球空间现象及实体在不同时间和空间尺度上具有的不同形态、结构和细节层次,应用于宏观、中观和微观各层次的空间建模和分析应用。)

1.1.4. 海量数据特征

海量数据特征指的是空间数据具有大规模、高密度的特征。随着遥感技术、地理信息采集技术的发展,获取的空间数据越来越庞大,其中包含了大量的地理信息。海量数据特征的分析需要借助于大数据技术和空间数据挖掘技术,以有效地管理、处理和分析这些海量数据,从中提取有用的信息和知识。

(GIS 地理空间数据的数据量极大。它既有空间特征(地学过程或现象的位置与相互关系),又有属性特征(地学过程或现象的特征)。空间数据不仅数据源丰富多样(如航天航空遥感、基础与专业地图和各种经济社会统计数据),而且更新快,空间分辨率不断提高。随着对地观测计划的不断发展,每天可以获得上万亿兆字节的关于地球资源、环境特征的数据,对海量空间数据组织、处理和分析成为目前 GIS 亟待解决的问题之一。空间数据量是巨大的,通常称海量数据。之所以称为海量数据,是指它的数据量比一般的通用数据库要大得多。一个城市地理信息系统的数据量可能达几十吉字节,如果考虑影像数据的存储,可能达几百吉字节。这样的数据量在其他数据库中是很少见的。地理信息系统的海量数据,带来了系统运转、数据组织与储存、网络传输等一系列技术困难,自然也给数据管理增加了难度。正因为空间数据量大,所以需要在二维空间上划分块或者图幅,在垂直方向上划分层来进行组织。)

1.2. 空间数据库的主要特征

1.2.1. 综合抽象特征

空间数据库可以综合存储地理空间数据、属性数据和拓扑关系数据。地理空间数据包括点、线、面等地理要素,属性数据则包括这些地理要素的属性信息,例如人口数量、土地利用类型等。而拓扑关系数据则用于描述地理要素之间的空间关系,比如相邻、覆盖等。

(空间数据描述的是现实世界中的地物和地貌特征,非常复杂,必须经过抽象处理。不同主题的空间数据库,人们所关心的内容也有差别。因此,空间数据的抽象性还包括人为地取舍数据。抽象性还使数据产生多语义问题。在不同的抽象中,同自然地物表示可能会有不同的语义。例如,河流既可以被抽象为水系要素,也可以被抽象为行政边界,如省界、县界等。)

1.2.2. 非结构化特征

地理空间数据具有一定的非结构化特征,即其空间位置和形状难以用传统的关系型数据库模型完全描述。因此,空间数据库需要支持对非结构化空间数据进行有效的存储和查询,以满足地理信息系统中对地理空间数据的需求。

(在当前通用的关系数据库管理系统中,数据记录一般是结构化的,即它满足关系数据模型的第一范式要求,也就是说每一条记录是定长的数据项表达的只能是原子数据,不允许嵌套记录,而空间数据则不能满足这种结构化要求。若将一条记录表达成一个空间对象,它的数据项可能是变长的。例如,1 条弧段的坐标,其长度是不可限定的,它可能是 2 对坐标,也可能是 10 万对坐标;此外,1 个对象可能包含另外的 1 个或多个对象。例如,1 个多边形,它可能含有多条弧段。若 1 条记录表示 1 条弧段,在这种情况下,1 条多边形的记录就可能嵌套多条弧段的记录,因此,它不满足关系数据模型的范式要求,这也就是空间图形数据难以直接采用通用的关系数据管理系统的主要原因之一。)

1.2.3. 分类编码特征

空间数据库通常需要对地理要素进行分类编码,以便进行空间数据的组织和管理。分类编码可以帮助用户对不同类型的地理要素进行识别和区分,同时也方便了空间数据的检索和分析。

(一般而言,每一个空间对象都有一个分类编码,而这种分类编码往往属于国家标准、行业标准或地区标准,每一种地物的类型在某个 GIS 中的属性项个数是相同的。因而在许多情况下,一种地物类型对应一个属性数据表文件。当然,如果几种地物类型的属性项相同,也可以有多种地物类型共用一个属性数据表文件。)

1.2.4. 复杂性与多样性特征

地理空间数据具有复杂性和多样性,包括不同尺度的空间数据、多维空间数据、多源空间数据等。空间数据库需要能够处理这种复杂性和多样性,提供有效的数据存储、查询和分析功能,以满足不同领域对地理空间数据处理的需求。

(空间数据源广、量大,时有类型不一致、数据噪声大等问题。进行数据挖掘的原数据可能包含了噪声、空缺、未知数据,而聚类算法对于这样的数据较为敏感,将会导致质量较低的聚类结果,因此,处理噪声数据的能力需要提高。选取挖掘的样本数据时,合理而准确地抽样是至关重要的,样本大不但降低了抽样效率,而且增加了后续工作的复杂性;样本小又存在样本不具有代表性,准确性不高的问题。因此,需要有效的抽样技术解决大型数据库中的抽样问题。由于进行挖掘所需要的数据可能来自于不同的数据源中,这些数据源中的数据可能具有不同的数据格式和意义,为有效地传输和处理这些数据,需要对结构化或非结构化数据的集成进行深人研究。)

2. 空间数据库与传统数据库相比有何差异?

2.1. 信息描述差异

1)在空间数据库中,数据比较复杂,不仅有与一般数据库性质相似的地理要素的属性数据,还有大量的空间数据,即描述地理要素空间分布位置的数据,并且这两种数据之间具有不可分割的联系。

2)空间数据库是一个复杂的系统,要用数据来描述各种地理要素,尤其是要素的空间位置,其数据量往往很大。空间数据库中的数据具有丰富的隐含信息。例如,数字高程模型(DEM)除了载荷高度信息外,还隐含了地质岩性与构造方面的信息;植物的种类是显式信息,但植物的类型还隐含了气候的水平地带性和垂直地带性的信息等。

2.2. 数据管理差异

1)传统数据库管理的是不连续的、相关性较小的数字和字符;而空间数据是连续的,具有很强的空间相关性。

2)传统数据库管理的实体类型少,并且实体类型之间通常只有简单固定的空间关系;而空间数据库的实体类型繁多,实体类型之间存在着复杂的空间关系,并且能产生新的关系(如拓扑关系)。

3)地理空间数据存储操作的对象可能是一维、二维、三维甚至更高维。一方面,可以把空间数据库看成是传统数据库的扩充;另一方面,空间数据库突破了传统的数据库理论,如将规范关系推向非规范关系。而传统数据库系统只针对简单对象,无法有效地支持复杂对象(如图形、图像)。传统数据库存储的数据通常为等长记录的原子数据,而空间数据库通常由于不同空间目标的坐标串长度不定,具有变长记录的特点,并且数据项也可能很大、很复杂。

4)地理空间数据的实体类型繁多,不少对象相当复杂,地理空间数据管理技术还必须具有对地理对象(大多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值