基于 GEE 的 MODIS 数据集计算作物缺水指数 CWSI

目录

1 作物缺水指数(CWSI)

2 完整代码

3 运行结果



1 作物缺水指数(CWSI)

CWSI(Crop Water Stress Index,作物缺水指数)是基于能量平衡原理计算的,用于衡量植被覆盖区域土壤的干旱程度。CWSI值的计算公式为:

其中ET代表实际蒸散量(mm),PET为潜在蒸散量(mm)。CWSI的取值范围在0到1之间,值越接近1表示土壤干旱程度越严重,而值越接近0则表明土壤较为湿润。

2 完整代码

基于MCD12Q1数据集识别研究区域内的作物区域,采用MOD16A2GF的ET和PET,计算每年夏季的作物CWSI,输出年度变化折线图和栅格数据。

var geometry = table;
Map.centerObject(geometry, 6);

var time_start = '2001-01-01', time_end = '2024-01-01';
var modis = ee.ImageCollection("MODIS/061/MOD16A2GF")
  .select('ET', 'PET')
  .filterDate(time_start, time_end);

var lc = ee.ImageCollection("MODIS/061/MCD12Q1")
  .select('LC_Type1').mode();
var crop = lc.eq(12);
Map.addLayer(crop.clip(geometry), {palette: ['fbf8f3', 'green']}, 'Crop Mask', false);

var annualCWSI = ee.FeatureCollection([]);

for (var year = 2001; year <= 2023; year++) {
  var summer = modis
    .filter(ee.Filter.calendarRange(6, 8, 'month'))
    .filter(ee.Filter.calendarRange(year, year, 'year'));

  var cwsi = summer.map(function(img) {
    var eq = img.expression('1 - (et / pet)', {
      'et': img.select('ET').multiply(0.1),
      'pet': img.select('PET').multiply(0.1)
    });
    return eq.rename('CWSI')
      .copyProperties(img, ['system:time_start']);
  });

  var summerCWSI = cwsi.mean().updateMask(crop);

  var meanCWSI = summerCWSI.reduceRegion({
    reducer: ee.Reducer.mean(),
    geometry: geometry,
    scale: 500,
    maxPixels: 1e13
  }).get('CWSI');

  var feature = ee.Feature(null, {
    'year': year,
    'meanCWSI': meanCWSI
  });

  annualCWSI = annualCWSI.merge(ee.FeatureCollection([feature]));

  Export.image.toDrive({
    image: summerCWSI,
    description: 'Summer_CWSI_Crop_' + year,
    region: geometry,
    scale: 500,
    crs: 'EPSG:4326',
    maxPixels: 1e13,
    folder: 'CWSI_Summer_Crop'
  });
}

var chart = ui.Chart.feature.byFeature(annualCWSI, 'year', 'meanCWSI')
  .setChartType('LineChart')
  .setOptions({
    title: 'Summer CWSI Mean for Croplands (2001-2023)',
    hAxis: {title: 'Year'},
    vAxis: {title: 'Mean CWSI', minValue: 0.4, maxValue: 0.8},
    lineWidth: 2,
    pointSize: 3,
    colors: ['black']
  });

print(chart);

3 运行结果

农作物种植区域
每年夏季作物CWSI年度变化折线图
点击RUN即可下载数据
### 关于植物缺水数据集下载 对于研究植物缺水状况,可以利用公开的遥感数据集来估算作物缺水指数CWSI)。以下是几个常用的数据源及其特点: #### 1. MODIS 数据 MODIS(Moderate Resolution Imaging Spectroradiometer)提供了全球范围内的高分辨率影像数据,可用于计算实际蒸散量(ET)和潜在蒸散量(PET),从而推导 CWSI。这些数据可以通过 NASA 的 EarthData 平台获取[^2]。 - **访问地址**: https://earthdata.nasa.gov/ - **主要参数**: - 地表温度 (LST, Land Surface Temperature) - 叶面积指数 (LAI, Leaf Area Index) - 蒸散量估计值 通过 Google Earth Engine (GEE),可以直接调用并处理 MODIS 数据集合,无需手动下载文件即可完成分析工作。 ```javascript // 示例代码:加载MODIS LST产品至Google Earth Engine var modisLst = ee.ImageCollection('MODIS/061/MOD11A1') .filterDate('2023-01-01', '2023-12-31'); print(modisLst); ``` --- #### 2. Landsat 数据 Landsat 卫星系列提供更高空间分辨率的地表反射率和热红外波段信息,适合局部区域的研究需求。其地表温度反演精度较高,能够支持更精细尺度上的 CWSI 计算[^1]。 - **访问地址**: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-products - **推荐工具**: 使用 USGS 提供的 Erdas Imagine 或者 ENVI 进行预处理;也可以借助 Python 和 R 实现自动化批量处理流程。 --- #### 3. FLUXNET 网络站点观测资料 FLUXNET 是一个国际协作项目,旨在收集陆地生态系统与大气间碳、水汽交换通量长期连续测量记录。部分站点配备了气象塔设备,可直接获得 ET/PET 测定结果以及相关环境因子序列,有助于验证模型模拟效果。 - **官方网站**: http://fluxnet.fluxdata.org/data/ - 注意事项: 需要注册账户并通过审核才能申请特定地点的历史档案副本。 --- #### 技术提示 当构建自己的算法框架时,请注意以下几点: - 确保输入变量单位一致性; - 对异常值进行合理过滤以免影响最终统计结论准确性; - 如果可能的话尝试融合多源异构型态的信息以提高预测性能表现。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值