目录
1 核植被指数(kNDVI)
目前,NDVI依然是比较流行的植被指数。但由于NDVI自身是“非线性”的,当植被覆盖持续增加时,比值NIR/RED持续增加,这种非线性的转换过程也使得NDVI对RED波段过度敏感,因此,在植被覆盖较高的或者生物含量较高地区,NDVI不可避免的伴有不同程度的饱和现象。此外,NDVI对红光(叶绿素)高度敏感,当叶绿索浓度超过一定浓度时,红光对叶绿素不再具有敏感性,很快出现饱和现象。
为了调整NDVI以适应大气和土壤噪声,特别是在植被茂密地区,减缓NDVI饱和性问题,在NDVI中加入了蓝光波段,提出了增强型植被指数EVI,但是EVI中饱和现象依旧存在。
有学者为解决NDVI(归一化差异植被指数)和EVI(增强型植被指数)的饱和度问题上存在的缺陷,通过采用机器学习的核方法理论,将NDVI线性化,转变为了kNDVI(核植被指数)。
kNDVI指数计算公式如下:
n为NIR;r为Red。核函数k表示这两个波段之间的相似性。在任何情况下均通过径向基函数(RBF)再生核,sigma控制近红外和红外波段之间的距离概念。
对于径向基函数(RBF),自相似性k(n,n)为1,可先简化为下式。