[JZOJ5029]. 【NOI2017模拟3.25】围墙

题目描述

蛐蛐国准备在和它的一个邻国——蝈蝈国之间修一堵围墙。
围墙可以看成是一个长度为n的括号序列,与此同时还有一个长度为n的排列P,一个围墙被称为稳的,当且仅当:
1、这个括号序列是合法的。
2、构造一张n个点的图,当且仅当第i个位置是左括号时,点i向右Pi连边,最后形成的图必须满足每个点度数均为一。保证对于任意i有Pi
一个括号序列合法的定义如下:
1、空序列是合法的。
2、如果“A”是合法的,那么“(A)”也是合法的。
3、如果“A”和“B”都是合法的,那么“AB”也是合法的。例如“()()((()()))”是合法的,而“())(()”不是。
现在蛐蛐国的领导人想知道一种合法的修墙方案。
本题由三个subtask,只有通过了一个subtask中的全部测试点才能获得该subtask中的所有分数。
subtask1:n=20,10分
subtask2:n=40,30分
subtask3:n=100,60分

分析

首先注意到这幅图每个点的度都为2,即是由多个环组成的。
奇环无解。
那么我们可以暴力枚举每个环的状态,要么环的第一条边选,然后第三条边选….依次下去,或者第二条边选,第四条边….
这样最差 2n/2 ,过不了。
再考虑大小为2的环,肯定是标号小一点那个的出边选会更优嘛。
那么最差 2n/4
做完了。

代码

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
typedef double db;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
const int N=205,mo=1000000007;
int a[N],bel[N],loop[N][N],tl[N],c[N],n,bt,pd[N],rec[N][N],prt[N],ttt,pp,dp[N],i,j,st;
void readin()
{
    int i;
    scanf("%d",&n);
    fo(i,1,n)
        scanf("%d",a+i);
}
void predo()
{
    int i,x;
    fo(i,1,n) 
        if (!pd[i])
        {
            tl[0]++;
            x=i;
            while (!pd[x])
            {
                pd[x]=1;
                loop[tl[0]][++tl[tl[0]]]=x;
                bel[x]=tl[0];
                x=a[x];
            }
            c[++c[0]]=tl[0];
            if (tl[tl[0]]==2)
            {
                dp[tl[0]]=1;
                prt[min(loop[tl[0]][1],loop[tl[0]][2])]=1;
                prt[max(loop[tl[0]][1],loop[tl[0]][2])]=-1;
            }
        }
}
void writ()
{
    int i;
    fo(i,1,n)
        if (prt[i]==1)
            printf("(");
        else 
        if (prt[i]==-1)
            printf(")");
        else 
            printf(" ");
}
int check()
{
    int tot=0,i,blk=0;
    fo(i,1,n) 
    {
        tot+=prt[i];
        if (tot<0) return 0;
    }
    if (tot>0) return 0;
    return 1;
}
int dfs(int x)
{
    if (x>tl[0])
    {
        if (check())
        {
            writ();
            pp=1;
        }
        return 0;
    }
    if (dp[x]) dfs(x+1);
    else
    {
        int i,st=1;
        fo(i,1,tl[x])
        {
            prt[loop[x][i]]=st;
            st=-st;
        }
        dfs(x+1);
        if (pp) return 0;
        st=-1;
        fo(i,1,tl[x])
        {
            prt[loop[x][i]]=st;
            st=-st;
        }
        dfs(x+1);
    }
}
int main()
{
    freopen("wall.in","r",stdin);
    freopen("wall.out","w",stdout);
    readin();
    predo();
    fo(i,1,tl[bel[n]]) if (loop[bel[n]][i]==n)
    {
        dp[bel[n]]=1;
        st=-1;
        fo(j,i,tl[bel[n]]) prt[loop[bel[n]][j]]=st,st=-st;
        st=1;
        fd(j,i-1,1) prt[loop[bel[n]][j]]=st,st=-st;
    }
    dfs(1);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值