Spark Streaming 将数据保存在msyql中

该博客探讨了Spark Streaming的持久化设计模式,特别是如何使用DStream的输出操作,如print、saveAs*Files及foreachRDD。重点介绍了如何使用foreachRDD与MySQL交互,包括建立连接池、批处理写入数据,以及优化MySQL操作以提高效率。
摘要由CSDN通过智能技术生成

Spark Streaming持久化设计模式

DStreams输出操作

  • print:打印driver结点上每个Dstream中的前10个batch元素,常用于开发和调试
  • saveAsTextFiles(prefix, [suffix]):将当前Dstream保存为文件,每个interval batch的文件名命名规则基于prefix和suffix:"prefix-TIME_IN_MS[.suffix]".
  • saveAsObjectFiles(prefix, [suffix]):将当前的Dstream内容作为Java可序列化对象的序列化文件进行保存,每个interval batch的文件命名规则基于prefix和suffix:: "prefix-TIME_IN_MS[.suffix]".
  • saveAsHadoopFiles(prefix, [suffix]):将Dstream以hadoop文件的形式进行保存,每个interval batch的文件命名规则基于prefix和suffix:: "prefix-TIME_IN_MS[.suffix]".
  • foreachRDD(func):最通用的输出操作,可以对从数据流中产生的每一个RDD应用函数_fun_。通常_fun_会将每个RDD中的数据保存到外部系统,如:将RDD保存到文件,或者通过网络连接保存到数据库。值得注意的是:_fun_执行在跑应用的driver进程中,并且通常会包含RDD action以促使数据流RDD开始计算。

使用foreachRDD的设计模式

dstream.foreachRDD对于开发而言提供了很大的灵活性,但在使用时也要避免很多常见的坑。我们通常将数据保存到外部系统中的流程是:建立远程连接->通过连接传输数据到远程系统->关闭连接。针对这个流程我

非常感谢您的提问。我可以尝试回答您的问题。在基于Scala语言的Spark Streaming,将结果保存至MySQL的方式非常简单。您可以使用Java JDBC连接器将Spark数据写入MySQL数据库。以下是一个简单的示例代码: ```scala import java.sql.{Connection, DriverManager, PreparedStatement} import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} object SparkStreamingToMySQL { def main(args: Array[String]) { val conf = new SparkConf().setAppName("SparkStreamingToMySQL").setMaster("local[*]") val ssc = new StreamingContext(conf, Seconds(5)) val lines = ssc.socketTextStream("localhost", 9999) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map((_, 1)).reduceByKey(_ + _) wordCounts.foreachRDD { rdd => rdd.foreachPartition { partitionOfRecords => val conn = createNewConnection() partitionOfRecords.foreach { record => val sql = "insert into word_counts(word, count) values (?, ?)" val stmt = conn.prepareStatement(sql) stmt.setString(1, record._1) stmt.setInt(2, record._2) stmt.execute() } conn.close() } } ssc.start() ssc.awaitTermination() } def createNewConnection(): Connection = { Class.forName("com.mysql.jdbc.Driver") DriverManager.getConnection("jdbc:mysql://localhost:3306/test?user=root&password=root") } } ``` 在这个示例Spark数据通过socketTextStream连接到本地的9999端口。然后,单词计数器被应用于流数据,并且使用foreachPartition函数将结果分区写回MySQL。如果MySQL数据库已经启动并且名称为“test”,则可以运行此示例代码,并将结果写入名为“word_counts”的表。 希望这个回答能够满足您的要求。如果您有任何其他问题或需要更多帮助,请告诉我。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值