【bzoj2005】能量采集【GCD】

为么很多这种题把顺序换一下就得到答案了。。。
一个植物(坐标(x,y))到原点的路线上经过的植物数是gcd(x,y)(包括那个植物本身)
((gcd1)2+1)=(gcd21)
因此把gcd21的和求出来即可。
下面说一说如何快速求ai=1bj=1gcd(i,j).
假设a不大于b。
ai=1bj=1gcd(i,j)
d|nϕ(d)=n
=ai=1bj=1d|gcd(i,j)ϕ(d)
=ad=1a/di=1b/dj=11
=ad=1adbd
然后求出phi的前缀和用那种神奇的根号扫描法(详见bzoj1101)就可以在O(a+b)的时间内解决询问了。

#include<cstring>
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=100001;
int prime[maxn/3],phi[maxn],tot;
bool isprime[maxn];
void genPrime(int n){
    memset(isprime,true,sizeof isprime);
    phi[1]=1;
    for(int i=2;i<=n;++i){
        if(isprime[i]){
            prime[tot++]=i;
            phi[i]=i-1;
        }
        for(int j=0;j<tot&&i*prime[j]<=n;++j){
            isprime[i*prime[j]]=false;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            else phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
}
int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    if(n>m) swap(n,m);
    genPrime(m);
    for(int i=1;i<=n;++i) phi[i]+=phi[i-1];
    long long ans=0;

    for(int i=1,nex;i<=n;i=nex+1){
        nex=min(n/(n/i),m/(m/i));
        ans+=1LL*(phi[nex]-phi[i-1])*(n/i)*(m/i);
    }
    cout<<ans*2-(long long)n*m<<"\n";
    return 0;
}
发布了42 篇原创文章 · 获赞 4 · 访问量 5万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览