[BZOJ2005]-线性筛欧拉函数

说在前面

这破题me在BZoj上wrong answer5次,之前真的是没发现什么错,对拍也没有问题。
然后发现是爆int了······
(搬电脑摔!)


题目

题目传送门:BZOJ2005

题目大意

虽然是中文题,还是简述一下
就是要让我们求:ans=ni=1nj=1(2gcd(i,j)1)


题目分析

我们需要知道这些

  1. 一个点阵中,以坐标(0,0)(x,y) 为两个端点的线段经过的整数点个数是 gcd(x,y)1

    证明:设x/gcd(x,y)为k,y/gcd(x,y)为q,那么整数点即为(k,q),(2k,2q),(3k,3q)(x,y)。又因为点(x,y)是端点,因此减1。点数即为 gcd(x,y)1

  2. n=d|nφ(d)I(nd)
    简单理解一下吧,I函数恒等于1(定义)。那么上式就是n=d|nφ(d)。对于1N的每一个数字i,都与N有唯一一个最大公因数d。那么所有dφ(d)就一定不重不漏的包含了1N的每一个数字

于是由题意我们可以立刻写出ans=ni=1nj=1(2gcd(i,j)1)
但是上面的公式,i和j都要枚举到1e5,时间过不去。
于是开始推导
    ni=1nj=1(2gcd(i,j)1)
=2ni=1nj=1gcd(i,j)nm

对于ni=1nj=1gcd(i,j)

=ni=1nj=1d|gcd(i,j)φ(d)

=ni=1nj=1nd=1[d|i][d|j]φ(d)     (其中[]是bool,成立为1不成立为0)

=φ(d)nd=1ni=1[d|i]nj=1[d|j]

=φ(d)nd=1ndmd

于是就化为了一个O(n)内就可以出答案的式子。


实现方案&&代码

先线性筛求出欧拉函数,再把d从1~N for一边即可求出答案

代码:
bzoj :   M:6876 kb    T:4 ms     L:931 B

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int limit , pri[300005] , phi[1000005] , cntp ;
bool is_notp[1000005] ;

void eular () {
    phi[1] = 1 ;
    for( int i = 2 ; i <= limit ; ++ i ){
        if( !is_notp[i] ){
            pri[ ++cntp ] = i;
            phi[i] = i - 1 ;
        }
        for(int j = 1 ; j <= cntp ; ++ j ){
            if( pri[j] * i > limit )    break ;
            is_notp[ pri[j] * i ] = true ;
            if( i % pri[j] == 0 ){
                phi[ i * pri[j] ] = phi[i] * pri[j] ;
                break;
            }
            else 
                phi[ i * pri[j] ] = phi[i] * ( pri[j] - 1 ) ;
        }
    }
}

int main(){
    int n , m ;
    long long ans = 0 ;
    scanf( "%d%d" , &n , &m ) ;
    limit = min( n , m ) ;
    eular( ) ;
    for( int i = 1 ; i <= limit ; ++ i )
        ans += ((long long)phi[i]) * ( n / i ) * ( m / i ) ;
    printf( "%lld" , (long long)- n * m + ans * 2  ) ;
    return 0 ;
}
发布了268 篇原创文章 · 获赞 29 · 访问量 6万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 创作都市 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览