[bzoj2005][Noi2010]能量采集

Description

在平面直角坐标系中,点(x,y)的代价定义为它和原点的连线中经过多少的其他整点个数*2+1。求横坐标在1~n且纵坐标在1~m的所有点的代价和。
n,m<=10^5

Solution

首先,一个点的代价就是gcd(x,y)*2-1(蒟蒻不会证,各路大犇们带带我呗)
然后,我们就变成了要求

i=1nj=1mgcd(i,j)
了。
很经典的莫比乌斯反演。
首先,设f(d)表示有多少个gcd(i,j)=d,g(d)表示有多少个gcd(i,j)是d的倍数。
那么很明显,g(d)=ndmd
则根据反演得
f(d)=i=1ndμ(i)g(di)

f(d)=i=1ndμ(i)ndimdi

那么
Ans=d=1ndi=1ndμ(i)ndimdi

第一个∑和第二个∑各分一次块就好了。(分块大法好)
当然,我们也可以预处理出后面的东西,或者先变形一下再预处理,然后就能分块根号n(似乎没卵用)

Code

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define N 100005
using namespace std;
typedef long long ll;
const int mo=1000000000+7;
ll ans,n,m,p[N],mu[N];
bool bz[N];
ll calc(ll n,ll m) {
    ll ans=0;
    for(ll l=1,r;l<=n;l=r+1) {
        r=min(n/(n/l),m/(m/l));
        ans+=(mu[r]-mu[l-1])*(n/l)*(m/l);
    }
    return ans;
}
int main() {
    scanf("%lld%lld",&n,&m);
    if (n>m) swap(n,m);mu[1]=1;
    fo(i,2,n) {
        if (!bz[i]) p[++p[0]]=i,mu[i]=-1;
        fo(j,1,p[0]) {
            int k=p[j]*i;if (k>n) break;
            bz[k]=1;if (!(i%p[j])) break;
            mu[k]=-mu[i];
        }
    }
    fo(i,1,n) mu[i]+=mu[i-1];
    for(ll l=1,r;l<=n;l=r+1) {
        r=min(n/(n/l),m/(m/l));
        ans+=(r+l)*(r-l+1)/2*calc(n/l,m/l);
    }
    printf("%lld\n",ans*2-n*m);
}
发布了498 篇原创文章 · 获赞 122 · 访问量 28万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览