AI代码转换支持支持硅基流动 api,新功能需求为标注尺寸添加计算公式

# 简介

AI代码转换支持

之前deepseek无法冲money

导致用户也无法测试

这个送14RMB可以玩很久

可选模型也很多,同步支持


 


# 为标注尺寸添加计算公式

该插件为Revit用户提供了一种便捷的方式,通过自定义公式为选中的线性尺寸标注添加计算功能。用户可以输入一个基准尺寸,并自动计算出标注的分割数量,最终生成一个带有计算结果的标注公式,便于在设计中更好地展示尺寸关系。

功能特点

  • 快速设置公式:用户只需选择标注,并输入一个计算个数,插件会自动生成公式。
  • 尺寸前缀:为尺寸标注添加前缀,格式为 尺寸x数量=计算结果,方便查看和记录。
  • 线性标注支持:插件仅适用于线性尺寸标注,确保精准计算。

使用步骤

  1. 启动插件
    在Revit中启动该插件,进入插件操作界面。


 

  1. 选择标注
    插件会提示您点击一个线性尺寸标注。请确保所选的标注是线性类型,插件会自动过滤不符合条件的标注。
  2. 输入计算个数
    在弹出的输入框中,插件会显示当前标注的尺寸值,并要求您输入一个用于计算分割数量的基准尺寸。输入完成后点击确认。
  3. 自动计算分割数量
    插件会根据输入的基准尺寸,自动计算出分割数量。计算公式为:
    分割数量 = 当前标注尺寸值 / 输入尺寸值
    然后,插件会将结果四舍五入为整数,并将结果应用为标注前缀。
  4. 查看计算公式
    生成的标注公式格式为 尺寸x数量=计算结果,例如:
    260x10=2600,其中 260 为用户输入的基准尺寸,10 为计算出的分割数量,2600 为最终计算的结果。
  5. 完成操作
    插件会自动保存您的设置,并且在文档中更新标注,确保操作不会丢失。

注意事项

  • 该插件仅适用于线性类型的尺寸标注,其他类型的标注将无法应用此功能。
  • 输入的基准尺寸应为正数,确保计算结果的准确性。
  • 用户输入的基准尺寸将存储在插件的配置文件中,便于后续使用。

常见问题解答

Q1:无法选择标注,怎么办?
确保您选择的对象是线性尺寸标注。如果仍无法选择,尝试重新启动插件或检查文档是否有损坏。

Q2:输入的计算个数无效,插件没有反应?
请确认输入的计算个数是有效的数字。如果仍无反应,可能是标注尺寸值无法匹配,请检查所选标注的尺寸。

Q3:插件计算的结果不准确,如何处理?
确保您输入的基准尺寸与标注尺寸单位一致,插件会根据不同的单位进行自动转换(如英尺和毫米之间的转换)。

结语

通过本插件,您可以更方便地为Revit标注设置自动计算公式,提高设计效率,避免手动计算的繁琐步骤!

# 写在最后 #


粉丝Free提需求!!如果你正在寻找提效的工具,希望这个免费的功能商店能帮到你
如果你对插件开发感兴趣,欢迎与我们交流一起探讨更多Revit使用技巧
AI一键生成Revit插件功能

 


欢迎评论区留言交流
Free功能百宝box不断更新中,欢迎粉丝提需求跟建议~

 


❤-------❤若有收获,就点个关注吧 -------❤
您的“关注”“点赞”“分享”"留言"对我们是一份鼓励!

 

### 关于流动API与OpenAI集成使用指南 #### 3.1 流动API简介 流动提供了强大的API接口,允许开发者轻松调用其预训练的语言模型服务。这些服务涵盖了多种自然语言处理任务,如文本嵌入、语义相似度计算等。为了更好地支持开发者的应用需求流动还特别优化了与中国本土环境相适应的功能特性[^2]。 #### 3.2 OpenAI API概述 OpenAI 提供了一系列先进的人工智能工具和服务,其中最著名的是GPT系列大语言模型。除了提供完整的在线访问外,OpenAI同样开放了一套RESTful风格的HTTP API给外部开发者用于集成到自有应用程序中去。这使得任何拥有有效API密钥的人都可以方便地请求来自云端服务器端的大规模机器学习算法运算结果[^1]。 #### 3.3 集成步骤说明 ##### Python代码实现示例 下面是一个简单的Python脚本例子,展示了如何同时利用流动和OpenAI两家服务商所提供的API来进行文档向量化表示: ```python import os from dbgpt.rag.embedding import OpenAPIEmbeddings # 初始化流动embedding对象 openai_embeddings = OpenAPIEmbeddings( api_url="https://api.siliconflow.cn/v1/embeddings", api_key=os.getenv("SILICONFLOW_API_KEY"), model_name="BAAI/bge-large-zh-v1.5" ) texts = ["Hello, world!", "How are you?"] res_siliconcloud = openai_embeddings.embed_documents(texts) print("SiliconCloud embeddings:", res_siliconcloud) # 假设这里也有一个对应的初始化方法来创建OpenAI的embeddings实例 # 这里仅作为示意并未给出具体实现细节 openai_embedding_instance = initialize_openai_embedder() res_openai = openai_embedding_instance.embed_documents(texts) print("OpenAI embeddings:", res_openai) ``` 此段程序首先定义了一个`OpenAPIEmbeddings`类的对象,该对象被用来封装对流云平台上的特定版本中文BERT模型(`model_name`)发起远程过程调用所需的一切参数设置;接着传入待转换为固定长度特征向量形式的一组字符串列表并执行实际的数据传输逻辑;最后打印输出得到的结果以便观察对比不同来源产生的差异之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值