1023: 修路
Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 400 Solved: 213
[ Submit][ Status][ Web Board]
Description
前段时间,某省发生干旱,B山区的居民缺乏生活用水,现在需要从A城市修一条通往B山区的路。假设有A城市通往B山区的路由m条连续的路段组成,现在将这m条路段承包给n个工程队(n ≤ m ≤ 300)。为了修路的便利,每个工程队只能分配到连续的若干条路段(当然也可能只分配到一条路段或未分配到路段)。假设每个工程队修路的效率一样,即每修长度为1的路段所需的时间为1。现在给出路段的数量m,工程队的数量n,以及m条路段的长度(这m条路段的长度是按照从A城市往B山区的方向依次给出,每条路段的长度均小于1000),需要你计算出修完整条路所需的最短的时间(即耗时最长的工程队所用的时间)。
Input
第一行是测试样例的个数T ,接下来是T个测试样例,每个测试样例占2行,第一行是路段的数量m和工程队的数量n,第二行是m条路段的长度。
Output
对于每个测试样例,输出修完整条路所需的最短的时间。
Sample Input
2 4 3 100 200 300 400 9 4 250 100 150 400 550 200 50 700 300
Sample Output
400 900
HINT
Source
解题思路:
用dp[i][j]表示前i段路由前j个工程队完成所需要的最短时间。用sum[i]表示一个工程队完成前i段路所需的时间。于是,对于i段路j个工程队,就可以看成,dp[k][j-1],前k段路被j-1个工程队完成的时间和第k+1段路到i段路由一个施工队完成所需要的时间的最大值(因为要最后完成的时间才算最终完成)。这样既保证路段被完成,又能确定时间。而一个工程队完成第k+1到第i段路的时间可以表示为sum[i]-sum[k];
AC代码:
用dp[i][j]表示前i段路由前j个工程队完成所需要的最短时间。用sum[i]表示一个工程队完成前i段路所需的时间。于是,对于i段路j个工程队,就可以看成,dp[k][j-1],前k段路被j-1个工程队完成的时间和第k+1段路到i段路由一个施工队完成所需要的时间的最大值(因为要最后完成的时间才算最终完成)。这样既保证路段被完成,又能确定时间。而一个工程队完成第k+1到第i段路的时间可以表示为sum[i]-sum[k];
AC代码:
#include <iostream>
#include<cstdio>
#include<cstring>
#define mx 300000000;
using namespace std;
int t,m,n,temp,a[305],sum[305],dp[305][305];//dp[i][j]为前i段路由前j个工队完成所需要的最短时间
int maxx(int a,int b)
{
if(a>b)
return a;
return b;
}
int calculate()
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=m;i++)
dp[i][1]=dp[i-1][1]+a[i];
for(int j=2;j<=n;j++)
for(int i=j;i<=m;i++)
{
temp=mx;
for(int k=j-1;k<i;k++)//开始写的k从1开始一直wa,后面才发现j-1个工程队修k段路的最短时间,k应该至少有j-1段路,若1段路要3个工程队修,则肯定不是最短
{
if(maxx(dp[k][j-1],sum[i]-sum[k])<temp)
{
temp=maxx(dp[k][j-1],sum[i]-sum[k]);
}
}
dp[i][j]=temp;
}
return dp[m][n];
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
a[0]=0;
memset(sum,0,sizeof(sum));
for(int i=1;i<=m;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-1]+a[i];//一个施工队修前i段路的时间
}
printf("%d\n",calculate());
}
return 0;
}