Description
前段时间,某省发生干旱,B山区的居民缺乏生活用水,现在需要从A城市修一条通往B山区的路。假设有A城市通往B山区的路由m条连续的路段组成,现在将这m条路段承包给n个工程队(n ≤ m ≤ 300)。为了修路的便利,每个工程队只能分配到连续的若干条路段(当然也可能只分配到一条路段或未分配到路段)。假设每个工程队修路的效率一样,即每修长度为1的路段所需的时间为1。现在给出路段的数量m,工程队的数量n,以及m条路段的长度(这m条路段的长度是按照从A城市往B山区的方向依次给出,每条路段的长度均小于1000),需要你计算出修完整条路所需的最短的时间(即耗时最长的工程队所用的时间)。
Input
第一行是测试样例的个数T ,接下来是T个测试样例,每个测试样例占2行,第一行是路段的数量m和工程队的数量n,第二行是m条路段的长度。
Output
对于每个测试样例,输出修完整条路所需的最短的时间。
Sample Input
24 3100 200 300 4009 4250 100 150 400 550 200 50 700 300
Sample Output
400
900
- 题解:二分+枚举,详见注释。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
using namespace std;
int main()
{
int t,n,m;
int mid,low,high;
int road[305];
cin>>t;
while(t--){
low=high=0;
cin>>n>>m;
for(int i=0;i<n;i++){
cin>>road[i];
low=max(low,road[i]);//工程队修完全部路段所需的最少时间,即最长路段
high+=road[i];//工程队修完整个路段所需的最长时间,即工程队只有一个的情况
}
while(low<high){//二分枚举
int k=1;
int temp=road[0];
mid=(low+high)/2;//假定某个工程队所修路段的最大值
for(int i=1;i<n;i++){
if(temp+road[i]>mid){//如果当前工程队所修的路段大于最大值,则说明需要另一个工程队来接手,
//只有这样才能保证最长时间不会超过假定的那个最大值。
k++;//所需工程队的数目加1
temp=road[i];//另一个工程队的起点为当前路段
}else{
temp+=road[i];//小于则继续修
}
}
if(k>m){//如果工程队的数量不够用,说明有些工程队要修的路段长度要增加
low=mid+1;
}else{
high=mid;//否则,说明有可能有些工程队要修的路段长度可以减少
}
}
printf("%d\n",low);
}
return 0;
}