tarjan算法求最大强连通 网络上的解释+自己的想法

转自网络:

FJ:low数组是记录能到达最小的节点,也就是一直搜到低,这时候返回值,最后一个节点j搜到了i,而且i在栈中,就是已经访问的点,那么low[j]是min(low[j],dfn[i]);

其实low[j]就等于了dfn[i]了,那么j返回前一个节点的时候,j上面的所有节点的low都等于dfn[i],那么这就是一个强连通了。

[有向图强连通分量]

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。

wps_clip_image-24103

 

大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介绍,首先介绍Tarjan算法

 

[Tarjan算法]

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

 

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

 

算法伪代码如下

tarjan(u)  
{

    DFN[u]=Low[u]=++Index     // 为节点u设定次序编号和Low初值

    Stack.push(u)                     // 将节点u压入栈中

    for each (u, v) in E               // 枚举每一条边

          if (v is not visted)          // 如果节点v未被访问过

                  tarjan(v)              // 继续向下找

                  Low[u] = min(Low[u], Low[v])

            else if (v in S)            // 如果节点v还在栈内

            Low[u] = min(Low[u], DFN[v])

    if (DFN[u] == Low[u])        // 如果节点u是强连通分量的根

       repeat

           v = S.pop                  // 将v退栈,为该强连通分量中一个顶点

           print v

      until (u== v)

}

 

接下来是对算法流程的演示。

从节点1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

wps_clip_image-16442

返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

wps_clip_image-24939

返回节点3,继续搜索到节点4,把4加入堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。

wps_clip_image-17734

继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

wps_clip_image-10846

至此,算法结束。经过该算法,求出了图中全部的三个强连通分量{1,3,4,2},{5},{6}。

可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次堆栈,每条边也只被访问了一次,所以该算法的时间复杂度为O(N+M)。

求有向图的强连通分量还有一个强有力的算法,为Kosaraju算法。Kosaraju是基于对有向图及其逆图两次DFS的方法,其时间复杂度也是O(N+M)。与Trajan算法相比,Kosaraju算法可能会稍微更直观一些。但是Tarjan只用对原图进行一次DFS,不用建立逆图,更简洁。在实际的测试中,Tarjan算法的运行效率也比Kosaraju算法高30%左右。此外,该Tarjan算法与求无向图的双连通分量(割点、桥)的Tarjan算法也有着很深的联系。学习该Tarjan算法,也有助于深入理解求双连通分量的Tarjan算法,两者可以类比、组合理解。

求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求双连通分量的Tarjan算法,以及求最近公共祖先的离线Tarjan算法,在此对Tarjan表示崇高的敬意

 

 

 

FJ:

hdu1269是道模板题,可以去做。我贴上自己的代码:

#include<iostream>
#include<stdio.h>
#include<string.h>

#define maxn 10000+10
#define maxe 100005
struct Node{int fa;int son;int next;}edge[maxe*4+5];
int head[maxn];
int all;
int scc;
int low[maxn];
int dfn[maxn];
int sta[maxn];
int insta[maxn];
int index=0;
int top=0;
int n,m;
void add(int fa,int son)
{
    edge[all].fa=fa;
    edge[all].son=son;
    edge[all].next=head[fa];
    head[fa]=all++;
}
void tanjran(int i)
{
    int j;
    dfn[i]=low[i]=index++;
    insta[i]=1;
    sta[++top]=i;
    for(int e=head[i];e!=-1;e=edge[e].next)
    {
        j=edge[e].son;
        if(dfn[j]==-1)
        {
            tanjran(j);
            low[i] = low[i] < low[j] ? low[i] : low[j];
        }
        else if(insta[j])
        {
            if(low[i]>dfn[j])
                low[i]=dfn[j];
        }

    }
    if(dfn[i]==low[i])
    {
        scc++;
        do
        {
            j=sta[top--];
            insta[j]=0;

        }while(j!=i);
    }
}
int main()
{
    while(~scanf("%d %d",&n,&m))
    {
        if(n==0&&m==0)
            return 0;
        all=1;
        memset(head,-1,sizeof(head));
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d %d",&a,&b);
            add(a,b);
        }
        memset(sta,-1,sizeof(sta));
        memset(insta,0,sizeof(insta));
        memset(dfn,-1,sizeof(dfn));
        memset(low,-1,sizeof(low));
        top=index=scc=0;
        for(int i=1;i<=n;i++)
        {
            if(dfn[i]==-1)
            {
                tanjran(i);
            }
        }
        if(scc==1)
            printf("Yes\n");
        else
            printf("No\n");
    }
}


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值