tarjan算法(相关概念、Tarjan求最大强连通分量、割点、求桥、缩点)

什么是连通分量

无向图 G 的最大连通子图称为 G 的连通分量

注:这里的最大连通子图的含义为:此图为 G 的连通子图,将 G 的任意一个点加到盖子图中之后,此子图将不再连通

比如这一张图中,很显然,我用三种颜色圈起来的部分都是原图的连通分量。(其实可以十分形象的理解成每一个连通分量都是一个连通块)回想到以前的“亲戚”一题,就是让我们去求在这个无向图中,询问的两个点是不是在同一个连通分量中。值得注意的一点,一个连通图的连通分量就是他本身。

关于有向图图的连通的一些概念

假如在一个有向图中对于每一对点 vi,vj 都存在 vi->vj 的路径和  vj->vi 的路径(值得注意的是,这里是存在一条路径,而不是存在一条边),那么就称之为强连通图

很显然,这一张图就是一个强连通图。有向图 G 的子图是强连通图,那么称该图为强连通子图

显然,在上图中 (1, 2, 3) 和 (4, 5, 6) 都是强连通子图

有向图 G 的最大强连通子图则称为 G 的强连通分量(这里的“最大”和之前是一个意思),显然,在上图中,最大强连通子图为图本身。

关于无向图的连通的一些概念

双连通图:在任意两个点之间都存在至少 2 条不相交可以理解为不重叠,我原本理解了半天)路径的图。

割点:如果删掉点 v 和与 v 相关联的边,那么得到新图至少有两个双连通分量, 那么称点 v 为割点。

:如果无向图中的桥后(桥是一条边),得到的新图包含两个连通分量

双连通图不包含割点的无向连通图。

双连通分量:无向连通图的最大双连通子图

点双连通分量:通过找割点获得的双连通分量

边双连通分量:通过找获得的双连通分量

为了举例子,在这里我继续使用上面的那一张图(换为无向)。

在图中,只有 (3, 4) 一条边,而割点只有 3、4 两个点。

Tarjan 算法

原本还有一个 kosaraju 算法,因为没有什么用,在这里就不专门介绍了。

这里我们用 dfn[i] 表示编号为 i 的节点在 dfs 的过程中的遍历顺序,就是一个 dfs 序。(也可以叫时间戳)

low[i] 表示 i 节点及其下方节点所能到达的开始时间最早的节点的开始时间。(初始时 low[i] = dfn[i]

这里有 1 个性质:因为在 dfs 的过程中会形成一棵搜索树,所以在越上面的节点显然 dfn 就会越小

如果发现一个点有边连到了搜索树中的自己的祖宗节点,那么就更新其 low 的值

关于 low 值与 dfn 值

1、如果一个节点的 low 值小于 dfn 值,那么就说明它或者它的子孙节点有边连到自己上方的节点

2、如果一个节点的 low 值等于 dfn 值,则说明其下方的节点不能走到其上方节点,那么该节点就是一个强连通分量在搜索树中的根

3、但是 u 的子孙节点就未必和 u 处于同一个强连通分量,用栈存储即可(具体看代码)。

代码实现:

void tarjan(int u)
{
	dfn[u] = low[u] = ++ dn; // 将 dfn 和 low 都赋值为编号 dn
	sta[ ++ tt] = u, vis[u] = 1, st1[u] = 1;
	// 将当前点 u 加入栈中,标记为访问过,已经入栈
	for (int i = h[u]; ~i; i = ne[i])
	{
		int j = e[i];
		if (!vis[j]) // 如果这个点还没有被访问过,就访问
		{
			tarjan(j); // 继续搜这个点的儿子节点
			low[u] = min(low[u], low[j]);
			// 更新这个点的 low 值为 low[u] 和 low[j] 的较小值
		}
		else if (st1[j]) // 如果这个点已经在栈中了
			low[u] = min(low[u], dfn[j]);
			// 那么就把这个点和这个子节点的 dfn 取最小值
	}
	int t;
	if (dfn[u] == low[u])
	// dfn[u] == low[u] 表示 u 是一个强连通分量的跟根
	{
		scc ++ ;
		// 统计连通分量的个数
		do
		{
			t = sta[tt -- ];
			st1[t] = 0;
			// 取出,标记为不在栈中
			cout << t << ' ';
		}while (u != t);
		cout << '\n';
		//	输出最大强连通分量
	}
}

当然,要求整张图最大连通分量,就要在主函数中这样调用它:

for (int i = 1; i <= n; i ++ )
		if (!dfn[i]) tarjan(i);

这样就可以求出所有的最大连通分量了!

用 Tarjan 算法求割点和桥

割点:如果一个点为 割点,那么当且仅当满足性质 (1) (2)。

(1):u 为树根,且有超过一个子树

(2):u 不为树根,且满足存在 (u, v) 为树枝边,使得 dfn(u) <= low(v)

:如果一条无向边 (u, v) 是桥,当且仅当 (u, v) 为树枝边,且满足 dfn[u] < low[v]前提是这条边不存在重边,不然删掉之后还是有边)。

关于割点,可以参考这个代码:

#include <bits/stdc++.h>
#define pb push_back

using namespace std;
const int N = 200010, M = N * 2, mod = 998244353;
typedef pair<int, int> PII;
typedef long long ll;
typedef unsigned long long ull;

int n, m, root;
int dn, dfn[N], low[N], cnt, tt, sta[N];
int h[N], e[M], ne[M], w[M], idx, scc;
bool st[N], st1[N], vis[N];
void add(int a, int b)
{
	e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}
void tarjan(int u)
{
	int son = 0;
	dfn[u] = low[u] = ++ dn;
	sta[ ++ tt] = u, vis[u] = 1, st1[u] = 1;
	for (int i = h[u]; ~i; i = ne[i])
	{
		int j = e[i];
		if (!vis[j])
		{
			tarjan(j), son ++ ;
			low[u] = min(low[u], low[j]);
			/*
			if (dfn[u] < low[v])
				cout << u << ' ' << v << '\n';
			输出桥 
			*/
			if (low[j] >= dfn[u] && u != root)
				cnt += !st[u], st[u] = 1;
		}
		else if (st1[j])
			low[u] = min(low[u], dfn[j]);
	}
	if (son >= 2 && u == root)
		cnt += !st[u], st[u] = 1;
	int t;
	/*
	if (dfn[u] == low[u])
	{
		scc ++ ;
		do
		{
			t = sta[tt -- ];
			st1[t] = 0;
			cout << t << ' ' 
		}while (u != t)
		cout << '\n';
	}
	输出最大强连通分量 
	*/
}

int main()
{
	memset (h, -1, sizeof h);
    ios::sync_with_stdio(false);
	cin >> n >> m;
	for (int i = 1; i <= m; i ++ )
	{
		int u, v;
		cin >> u >> v;
		add (u, v), add(v, u);
	}
	for (int i = 1; i <= n; i ++ )
		if (!dfn[i]) root = i, tarjan(i);
	cout << cnt << '\n';
	for (int i = 1; i <= n; i ++ )
		if (st[i]) cout << i << ' ';
    return 0;
}

这个是洛谷 P3388 的代码,桥的代码和最大连通分量的代码也在其中。

关于 Tarjan 缩点的方法

这里草草的说一下,其实缩点就在 Tarjan 求强连通分量的时候用一个 id 数组和 cnt 数组,存一下每一个点在哪一个强连通分量中和强连通分量的大小,就可以了,实现如下:

if (dfn[u] == low[u])
{
	scc ++ ;
	do
	{
		t = sta[tt -- ];
		st1[t] = 0;
        id[t] = scc, cnt[scc] ++ ;
//		cout << t << ' ';
	}while (u != t)
//	cout << '\n';
}

关于 Tarjan 算法的一些介绍就说到这里了,下次再见 ~~。

  • 8
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值