CINTA第三次作业

CINTA第三次作业

第六章7、8、9、10


7、设G是群,对任意n∈N,i∈[0,n] ,g_{i}∈G。g_{0}g_{1}...g_{n}的逆元是{g_{n}}^{-1}...{g_{1}}^{-1}{g_{0}}^{-1}

证明:由群公理封闭性得   ∵ g_{i}∈G  ∴ g_{0}g_{1}...g_{n}∈G

           根据公理:任意a∈G,存在逆元a^{-1}∈G,使得a \cdot a^{-1}=e=a^{-1}\cdot a ;

           ∵(g_{0}g_{1}...g_{n})·({g_{n}}^{-1}...{g_{1}}^{-1}{g_{0}}^{-1}

              =\left ( g_{0}g_{1} ...\left ( g_{n} \cdot {g_{n}}^{-1}\right )...{g_{1}}^{-1}{g_{0}}^{-1}\right )

              =e

                \left ( {g_{n}}^{-1}...{g_{1}}^{-1}{g_{0}}^{-1} \right )\cdot \left ( g_{0}g_{1}...g_{n}\right )

              =\left ( {g_{n}}^{-1}...{g_{1}}^{-1}\left ( {g_{0}}^{-1} g_{0}\right )g_{1}...g_{n} \right )

              =e

          ∴ g_{0}g_{1}...g_{n}的逆元是{g_{n}}^{-1}...{g_{1}}^{-1}{g_{0}}^{-1}


8、证明:任意群G的两个子群的交集也是群G的子集。 

证明:设 H_{1}H_{2}  是群G的两个子群

           任意a、b∈ H_{1}H_{2} 

           根据群公理封闭性得:a\cdot bH_{1} 、a\cdot bH_{2}

           ∴ a、b∈H_{1}H_{2}

           满足群公理封闭性

           ∴ 任意群G的两个子群的交集也是群G的子集


9、证明或伪证:任意群G的两个子群的并集也是群G的子集。

证明: 设 H_{1}H_{2}  是群G的两个子群

            任意 a∈H_{1} 且 a∉H_{2}、任意b∈H_{2} 且b∉H_{1}

            ∴a\cdot bH_{1} 、a\cdot bH_{2}

            ∴a\cdot bH_{1}H_{2}

            不满足群公理封闭性

            ∴任意群G的两个子群的并集也是群G的子集


10、G是阿贝尔群,H和K是G的子群。请证明HK={hk:h∈H,k∈K}是群G的子群 。如果G不是阿贝尔群,结论是否仍然成立?

证明:取任意h_{1}h_{2}∈H ,k_{1}k_{2}∈K

          ∴ h_{1}k_{1}∈HK   h_{2}k_{2}∈HK

          ∵ H和K是G的子群

          ∴ h_{1}h_{2}k_{1}k_{2} ∈ G

          由封闭性得:h_{1}k_{1}∈G 、h_{2}k_{2} ∈G 、h_{1}k_{1}h_{2}k_{2} ∈G

          ∵ G是阿贝尔群

          ∴ h_{1}k_{1}h_{2}k_{2} = h_{1}h_{2}k_{1}k_{2}

          ∵ h_{1}h_{2}∈H 、k_{1}k_{2}∈K

          ∴ h_{1}h_{2}k_{1}k_{2}∈HK

          即 h_{1}k_{1}h_{2}k_{2}∈HK

          满足封闭性 ∴ HK={hk:h∈H,k∈K}是群G的子群

          若G不是阿贝尔群,其不满足交换律 ∴ 结论不成立


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值