CINTA第五次作业

第九章

5,6,7,8,9 

5,定义映射φ:G → G 为:g → g² 。请证明φ是一种群同态,当且仅当G是阿贝尔群。

证明:任取a,b ∈ G,

①充分性:因为同态,所以φ(ab)=φ(a)φ(b)

                  根据同态定义得,(ab)²=a²b²

                  展开得,abab=aabb

                  根据消去律得,ba=ab,满足交换律

②必要性:因为G为阿贝尔群,则G中元素满足交换律

                  则φ(ab)=(ab)²=abab=a²b²=φ(a)φ(b)

                  群操作得以保持


6、设φ:G→H是一种群同态。请证明:如果G是循环群,则φ(G)也是循环群;如果G是交换群,则φ(G)也是交换群。

①循环群

证明:记g为G的生成元,即证明φ(G)=〈φ(g)〉

          任取φ(g′)∈φ(G),因为G是循环群,所以g^{'}=g^{i},于\Phi \left ( g^{'} \right )= \Phi\left ( g^{i} \right )= \left ( \Phi \left ( g \right ) \right )^{i}\in \Phi \left ( g \right )

          任取\Phi \left ( g \right )^{i}\in \Phi \left ( g \right ),因为同态,所以\Phi \left ( g \right )^{i}= \Phi \left ( g^{i} \right )g^{i}\in G,所以\Phi \left ( g^{i} \right )\in \Phi \left ( G \right )

          命题得证

 ②交换群:

证明:任取g_{1},g_{2}\in Gg_{1}g_{2}=g_{2}g_{1}

           \Phi \left ( g_{1} \right )\Phi \left ( g_{2} \right )= \Phi \left ( g_{1} g_{2}\right )= \Phi \left ( g_{2} g_{1}\right )= \Phi \left ( g_{2} \right )\Phi \left ( g_{1} \right )

           φ(G)满足交换律为交换群

          命题得证


7、证明:如果H是群G上指标为2的子群,则H是G的正规子群。

①若 g∈H,则H=gH=Hg 

②若g∈G且g∉ H,则由陪集的同一性或不相交性可知:gH=G-H,Hg=G-H,故gH=Hg


8、给定任意群G,H是群G的正规子群。请证明,如果群G是阿贝尔群,则商群G/H也是阿贝尔群。 

证明:因为是正规子群,所以g_{1}H\cdot g_{2}H=g_{1}g_{2}HH

           因为是阿贝尔群,所以g_{1}g_{2}HH= g_{2}Hg_{1}H

           从而\left ( g_{1}H \right )\left ( g_{2}H \right )= \left ( g_{2}H \right )\left ( g_{1}H \right ),进而命题得证


9、给定任意群G,H是群G的正规子群。请证明,如果群G是循环群,则商群G/H也是循环群。 

 证明:任取g^{i}H\in \left \langle gH \right \rangle,因为g^{i}\in G,所以g^{i}H\in G/H

            任取g^{i}H\in G/H,得g^{i}H\in \left \langle gH \right \rangle

            所以\left \langle gH \right \rangle= G/H,命题得证。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值