深度学习的中医舌诊检测诊断系统研究与实现(PyQt5界面+数据集+训练代码)

本研究旨在开发一种基于YOLOv8深度学习模型的中医舌诊检测和诊断系统,以实现舌诊的自动化和智能化,帮助医生进行快速、精准的中医诊断。舌诊是中医诊断的一个重要手段,舌象的不同特征常常反映出人体的健康状态和潜在的疾病。在中医舌诊中,舌苔的厚度、颜色和质地等是诊断疾病的重要依据。

本系统结合了PyQt5图形界面,提供用户友好的交互界面,方便操作人员导入图像、进行舌象检测并获取诊断结果。为了使系统能够准确识别舌苔特征,我们引入了多种类型的舌苔数据集,包括”镜面苔”、”白腻苔”、”薄白苔”、”黄腻苔”以及”灰黑苔”等。这些舌苔类型各自对应不同的身体状态和疾病特征,例如”镜面苔”可能表明气血不足或营养不良,而”黄腻苔”则可能预示体内湿热积聚。此外,”白腻苔”、”薄白苔”、”灰黑苔”等则分别反映不同的寒热、虚实病症。系统在训练过程中使用了丰富的舌苔图像样本,通过YOLOv8模型进行特征提取和分类。

在实验验证中,系统表现出较高的检测和分类准确性,能够快速、精准地识别不同类型的舌苔,从而帮助医师获得更为准确的诊断信息。与传统的人工舌诊相比,系统大大提高了舌诊的效率,减少了人为误差,使舌诊过程更加客观和标准化。该系统不仅适用于中医临床诊断,还可应用于中医教学、研究等领域,作为一个有效的辅助诊断工具,帮助推广和普及中医诊疗技术。未来,我们计划进一步扩展系统的数据集,增加更多的舌象特征,以提高系统的全面性和准确性,推动中医诊断智能化的进一步发展。

算法流程

项目数据

通过搜集关于数据集为各种各样的舌诊相关图像,并使用Labelimg标注工具对每张图片进行标注,分5检测类别,分别是’镜面舌苔’,’白腻舌苔’,’薄白舌苔’,’黄腻舌苔’,’灰黑舌苔’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文

高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明,个人大四的毕业设计、经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的学习者,也可作为课程设计、期末大作业。 高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Python+Vue的中医智能系统源码+数据库+文档说明高分毕设基于Py
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 中医苔项目Web应用开发python源码+项目说明.zip ### 一、项目概述 ​项目的主要功能是利用深度学习算法对用户上传的象图片进行分析,对象的色、苔色、薄厚、腻否进行四维分类。项目采用多模型拼接进行各类任务的专项训练。这种方法使得不同的象处理任务在不同的模型进行处理,然后将它们拼接起来形成完整的象分析链条。该多模型采用了yolov5目标检测模型、Segment Anything模型进行象的分割对用户上传的象图片进行预处理,使用ResNet50残差神经网络对剩余的完整象进行分类任务。 项目的多模型部署于Web应用的后端,用户可以便捷的使用浏览器在各类系统上进行象的上传以及获得象分析的结果。应用操作简单,使用便捷。 ### 二、源码文件架构 ``` TongueDiagnosis{ application (后端) { config (后端配置) core (核心算法) models (数据库模型) net (神经网络模型) orm (数据库映射模型) routes (路由) init.py (后端初始化) } frontend (前端) { cypress (调试文件) public (静态文件) src (代码) { assets (资产) components (组件) router (路由) views (视图) App.vue (Vue应用根组件) main.js (Vue应用入口) } index.html (网站入口) package.json (所有包管理配置) vite.config.js (脚手架配置,打包代理跨域配置) } .gitignore (git忽略) run.py (整体应用入口) } ``` ### 三、应用功能 象上传断: 断功能属于平台的核心业务,实现象的上传、断并且生成健康报告和建议。在象上传环节,用户可以通过自己的设备进行象的上传,平台将会对用户上传的象进行断并生成属于用户的健康报告。生成的健康报告会及时显示给用户,同时平台将会储存用户的健康报告,供用户以后进行查看。 ........
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值