随着医学影像技术的发展,脑部肿瘤的早期诊断和治疗变得越来越重要。然而,传统的影像分析方法往往依赖于人工检查,存在一定的主观性和局限性。本研究提出了一种基于YOLOv8深度学习算法的医学影像脑肿瘤检测与诊断系统,该系统结合了PyQt5图形用户界面(GUI)设计,旨在为医生提供高效、准确的肿瘤检测与诊断工具。
系统首先使用YOLOv8模型进行脑部影像的自动化肿瘤检测,通过训练集上的深度学习模型,能够在影像中快速定位肿瘤位置,并进行分类预测(”无肿瘤”或”肿瘤”)。其次,PyQt5界面展示了处理后的影像,直观地标出肿瘤的位置并显示相应的诊断结果。为了训练该模型,我们使用了包含标注的医学影像数据集,数据集包含了不同类型脑肿瘤的MRI影像。
实验结果表明,该系统在肿瘤检测任务上取得了良好的效果,能够有效提高医生的诊断效率,减少人为误差,并在实际应用中展示出良好的可操作性和准确性。该研究为脑肿瘤的自动化检测和早期诊断提供了一个有力的工具,并为深度学习在医学影像中的应用提供了新的思路和实践经验。
算法流程
Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。
项目数据
Tipps:通过搜集关于数据集为各种各样的脑肿瘤相关图像,并使用Labelimg标注工具对每张图片进行标注,分2检测类别,是’无肿瘤’, ‘肿瘤’。
目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
结束后,在cmd中输入labelimg
初识labelimg
打开后,我们自己设置一下
在View中勾选Auto Save mode
接下来我们打开需要标注的图片文件夹
并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。
Labelimg的快捷键
(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。
data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)
首先在images这个文件夹放置待标注的图片。
生成文件如下:
“classes.txt”定义了你的 YOLO 标签所引用的类名列表。
(4)YOLO模式创建标签的样式
存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。
注意:这里的中心点坐标、宽和高都是相对数据!!!
存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。
完成后可进行后续