基于YOLOv8深度学习的心电图心律失常检测自动检测与诊断系统

随着深度学习技术的快速发展,心电图(ECG)作为心律失常检测的重要工具,在医疗诊断领域的应用越来越广泛。本文提出了一种基于YOLOv8深度学习框架的自动化心律失常检测与诊断系统,结合PyQt5界面开发,实现了对常见心律失常的实时检测与分类。该系统使用的数据集涵盖了以下六种心律状态:左束支传导阻滞(Left Bundle Branch Block, LBBB)、正常(Normal)、房性早搏(Premature Atrial Contraction, PAC)、室性早搏(Premature Ventricular Contractions, PVC)、右束支传导阻滞(Right Bundle Branch Block, RBBB)、心室颤动(Ventricular Fibrillation, VF)。

系统的核心模块包括基于YOLOv8的心电图特征提取与心律异常检测模型,自定义优化的训练策略以提高模型在多类别心律失常检测中的准确性,以及基于PyQt5的用户交互界面,实现了心电图数据的加载、检测与诊断功能。通过这些模块的协作,该系统能够高效处理心电图数据,提供精准的检测结果,同时提升用户体验,满足医疗诊断的实际需求。

实验结果表明,该系统在多个心律失常数据集上的检测准确率和召回率均达到高水平,相较于传统算法有显著提升。系统在实时性和扩展性上的出色表现,使其在远程医疗和便携式健康监测设备中具有广泛的应用潜力。本研究为基于深度学习的心律失常诊断提供了一种有效的解决方案,并为未来智能化医疗辅助诊断技术的发展提供了新方向。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

项目数据

Tipps:通过搜集关于数据集为各种各样的心电图心率失常相关图像,并使用Labelimg标注工具对每张图片进行标注,分6检测类别,分别是’左束支传导阻滞’,’心率正常’,’房性早搏’,’室性早搏’,’右束支传导阻滞’,’心室颤动’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值