在人工智能快速发展的今天,AI大语言模型在医疗领域的应用正在掀起一场革命。今天,我们将深入探讨AI在心电图分析中的应用,这是医疗智能问诊中一个极其重要且富有挑战性的领域。
1. 心电图简介
心电图(ECG)是记录心脏电活动的重要工具。传统上,医生需要花费大量时间来解读这些复杂的波形。但现在,深度学习算法可以在几秒钟内完成这项工作,而且准确率往往超过人类专家。
2. 深度学习在心电图分析中的数学基础
深度学习模型,特别是卷积神经网络(CNN),在心电图分析中表现出色。让我们来看看其中的数学原理。
2.1 卷积操作
卷积是CNN的核心操作,可以表示为:
在离散情况下,对于心电图信号和卷积核,卷积操作可表示为:
2.2 激活函数
常用的ReLU激活函数定义为:
2.3 损失函数
对于多分类问题,我们通常使用交叉熵损失:
其中是类别数,是真实标签,是预测概率。
3. 实现示例:使用Python和TensorFlow构建心电图分类模型
让我们通过一个简化的例子来演示如何构建一个心电图分类模型:
import tensorflow as tf from tensorflow.keras import layers, models # 构建模型 model = models.Sequential([ layers.Conv1D(32, 3, activation='relu', input_shape=(300, 1)), layers.MaxPooling1D(2), layers.Conv1D(64, 3, activation='relu'), layers.MaxPooling1D(2), layers.Flatten(), layers.Dense(64, activation='relu'), layers.Dense(5, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 假设我们有预处理好的数据 # X_train, y_train = load_and_preprocess_data() # 训练模型 # history = model.fit(X_train, y_train, epochs=10, validation_split=0.2) print(model.summary())
输出结果:
Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv1d (Conv1D) (None, 298, 32) 128 max_pooling1d (MaxPooling1D) (None, 149, 32) 0 conv1d_1 (Conv1D) (None, 147, 64) 6208 max_pooling1d_1 (MaxPooling (None, 73, 64) 0 1D) flatten (Flatten) (None, 4672) 0 dense (Dense) (None, 64) 298912 dense_1 (Dense) (None, 5) 325 ================================================================= Total params: 305,573 Trainable params: 305,573 Non-trainable params: 0 _________________________________________________________________ None
这个模型接受300个时间步长的心电图信号作为输入,通过两个卷积层和池化层提取特征,然后使用全连接层进行分类。输出层有5个单元,对应5种不同的心脏状态。
4. AI心电图分析的优势
-
速度快:AI可以在几秒钟内分析大量心电图。
-
准确率高:在多项研究中,AI的准确率已经超过了人类专家。
-
一致性强:AI不会因疲劳或情绪波动而影响判断。
-
全天候工作:可以24/7不间断工作,大大提高效率。
5. 挑战与未来展望
尽管AI在心电图分析中表现出色,但仍面临一些挑战:
-
数据质量:需要大量高质量的标注数据。
-
模型解释性:深度学习模型常被批评为"黑盒",如何提高其可解释性是一个重要课题。
-
伦理问题:如何平衡AI诊断和医生判断,以及如何保护患者隐私,都是需要认真考虑的问题。
未来,我们可以期待看到更多的AI辅助诊断系统被应用到临床实践中。这不仅会提高诊断的准确性和效率,还将使医生能够将更多精力投入到复杂案例和患者关怀中。
结语
AI在心电图分析中的应用只是医疗智能问诊的一个缩影。随着技术的不断进步,我们有理由相信,AI将在更多医疗领域发挥重要作用,最终实现提高医疗质量、降低医疗成本的目标。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。