甲状腺疾病的早期诊断对于提高治疗效果和改善患者预后具有重要意义。超声影像因其无创、经济高效的特点,成为甲状腺疾病诊断的主要手段。然而,超声图像的诊断依赖于医生的经验,可能存在主观性和准确率不高的问题。为解决这一难题,本文提出了一种基于深度学习的甲状腺超声图像良恶性诊断算法。
该研究首先构建了包含甲状腺良性和甲状腺恶性二类病症的大规模标注数据集,并设计了数据增强方法以应对数据不平衡问题。在算法部分,我们采用了主流深度学习模型(如VGG16和ResNet50),并通过迁移学习和特定超声图像的特征优化,提升了模型的诊断准确率和鲁棒性。模型的训练和评估在PyTorch框架下进行,实验结果显示,提出的算法在甲状腺良恶性分类任务中取得了显著优于传统方法的表现,分类准确率达到84%,灵敏度和特异性均得到有效优化。
此外,本文开发了基于PyQt5的诊断辅助界面,集成了模型预测、图片上传、结果展示和数据存储等功能。该系统友好易用,能够实时对超声图像进行分类诊断,为临床医生提供可靠的决策支持工具。通过与实际病例对比分析,验证了系统在临床应用中的潜力。
本文的研究不仅为甲状腺肿瘤的自动化诊断提供了一种有效解决方案,也为其他医学影像的深度学习研究和实际应用提供了参考。未来工作将进一步探索多模态影像融合及多病种联合诊断方法,拓宽深度学习在医学影像领域的应用范围。
算法流程
Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。
项目数据
Tipps:传统的机器学习算法对图像进行识别等研究工作时,只需要很少的图像数据就可以开展工作。而在使用卷积神经网络解决研究的甲状腺结节识别问题的关键其一在于搭建合适的神经网络,其二更需要具备大量优质的训练数据集,在大量的有标签数据不断反复对模型进行训练下,神经网络才具备我们所需要的分类能力,达到理想的分类效果。因此有一个质量较好的图像数据集至关重要。
数据集介绍:
卷积神经网络的深度学习模型。数据集包含 1436 张图像,分布在二个类别中:恶性的(804 张)、良性的(632 张)。数据集可用于训练和验证深度学习模型,以实现甲状腺疾病的自动化分类诊断,同时可以结合数据增强技术(如翻转、裁剪、噪声添加等)优化模型性能,为甲状腺疾病的研究和临床诊断提供重要支持。
数据集已被预先标注,每个类别的图像数量基本均衡,为训练和验证提供了稳定的基准。数据集被划分为训练集和测试集,其中每类生肖图像的数量分别如下:
(1)训练集:良性类597张图像,恶性类769张图像,共1366张图像。
(2)测试集:良性类35张图像,恶性类35张图像,共70张图像。
这种划分方式保证了数据的多样性和代表性,同时通过验证集和测试集的独立性,能够有效评估模型的泛化能力。
数据集划分
数据集已预先划分为两个部分:训练集和测试集,具体如下:
(1)训练集:良性类597张图像,恶性类769张图像,共