二项分布与泊松分布

本文重新探讨概率论中的二项分布和泊松分布。二项分布适用于重复n次独立的伯努利试验,其期望值E(X)=n*p。当试验次数n很大,事件发生的概率p较小时,泊松分布可以作为二项分布的近似,此时λ=n*p。通过泊松分布,可以计算特定次数事件发生的概率。
摘要由CSDN通过智能技术生成

最近学的一门课需要概率论方面的知识,但考完试就把概率论忘得干净,所以现在重新学习概率论中的二项分布和泊松分布,并探讨他们之间的关系。


二项分布的定义:二项分布即重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值