摘自:一篇彻底搞懂傅里叶变换及其背后原理 作者:知乎,dongyu 群的概念就是对于群内的任意一个行为导致的结果都可以看作是群内其他两个行为导致结果的叠加,直观理解就是对一个其施加一个作用不会产生变化,比如对直线滑动拉伸操作之后,直线还是直线,我们无法区分到底发生了什么。对数字的加法乘法就是两个典型的群,加法相当于左右滑动行为,乘法相当于伸缩行为,比如 x+5=x+2+3 ,将x向右边滑动5个单位与先将x向右滑动2的单位再向右滑动3个单位的结果是相同的, x∗6=x∗2∗3 , x∗6 表示将x拉伸到6倍的地方,结果与先将x拉伸到2倍的地方再将到当前结果拉伸到当前结果的3倍的地方效果相同,对于线条来说滑动拉伸都不会使其发生变化,对于一个圆来说,它是一个旋转群,因为无论怎么旋转这个圆他始终保持不变,并且无法知道之前对圆进行了怎样的旋转操作,所以我们知道除了有滑动群和拉伸群还有旋转群,怎么将旋转群引入到数中,就引入了复数i,对一个数x,乘一个实数表示拉伸,乘一个i表示旋转90度,乘两个i表示旋转180度,所以 =−1 ,上面都是输入与输出对应着同一种变换,输入是加法输出对应是加法,输入是乘法,输出对应也是乘法,但是对于幂指数输入是加法,但是输出对应的则是乘法 =∗ ,相当于与在实数轴的滑动对应实数轴的伸缩,此时对幂指数引入复数,则对复数轴的滑动对应着旋转,而恰好 表示旋转一个弧度,因此 =−1 ,因为 表示旋转 π个弧度,相当于 ∗i∗i 操作,所以前面的 f(t)∗(负号表示顺时针旋转)就相当于在一定的时间跨度内旋转 2πft 个弧度,从这里又可以再次印证之前那句话,即时间越长傅里叶变换的效果就越好,因为旋转的弧度越大则点分布越均匀,则质心越具有说服力,再次说明了这个模型的正确性,同理,如果时间不够长,则对高频的傅里叶变换分离效果更好。 实际上频域图却总是连续的曲线,是由于非周期信号的傅里叶级数由于T趋近于无穷导致w趋近于无穷小,在频率轴上就连续了