基于MILP方法的风电优先调度的电力系统机组组合优化(附python代码)

 ---问题描述---


在一个电力系统中,有 3 台火电机组和 2 台风电机组,它们需要共同满足 24 个时段的负荷需求。风电机组的出力具有波动性,并作为优先调度的能源(即风电优先消纳)。火电机组需要通过调整功率输出弥补风电出力的不足。

目标是通过优化火电机组的开机状态和功率分配,最小化总运行成本,同时满足以下约束条件

(1)功率平衡约束:在每个时段 t,火电机组和风电机组的出力之和必须满足系统的负荷需求。
(2)风、火电机组功率输出范围约束:每台机组的功率输出必须在其最小和最大功率之间。
(3)风电有限消纳约束:风电出力作为已知参数,优先利用

已知参数:

三台火电机组上下限均为(100,1000),两台风电机组上下限分别为(50, 300), (100, 400)。

三台火电机组的成本为以火电机组出力为自变量的二次函数,二次函数系数A、一次函数系数B和常数项系数C。三台火电机组系数分别为(0.01, 5, 100), (0.015, 6, 150), (0.02, 7, 200);两台风电机组的固定成本系数分别为[500, 600]。

日负荷曲线值 [2400, 2350, 2300, 2200, 2200, 2220, 2450, 2450, 2400, 2300, 2400, 2450,2490, 2200, 2250, 2450, 2500, 2510, 2510, 2510, 2700, 2600, 2500, 2450] 

本模型的部分python代码如下


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值