题目描述
编写一个高效的算法来搜索
m x n
矩阵matrix
中的一个目标值target
。该矩阵具有以下特性:
- 每行的元素从左到右升序排列。
- 每列的元素从上到下升序排列。
示例 1:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5 输出:true示例 2:
输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20 输出:false提示:
m == matrix.length
n == matrix[i].length
1 <= n, m <= 300
-
<= matrix[i][j] <=
- 每行的所有元素从左到右升序排列
- 每列的所有元素从上到下升序排列
-
<= target <=
解题思路
为了高效地搜索一个具有特定性质的矩阵中的目标值,我们可以利用矩阵的排序特性来设计一个时间复杂度为 O(m+n)O(m + n)O(m+n) 的算法:从矩阵的右上角或左下角开始搜索,并根据当前元素与目标值的比较结果决定搜索的方向。算法思路:
-
初始化:从矩阵的右上角开始。初始化
row
为 0(矩阵的行数 - 1),col
为 0(矩阵的列数 - 1)。 -
搜索:目标值小于当前元素:由于每列的元素是升序的,目标值在当前列的上方,因此我们可以向左移动;目标值大于当前元素:由于每行的元素是升序的,目标值在当前行的下方,因此我们可以向下移动;目标值等于当前元素:找到目标值,返回
true
。 -
终止条件:当
row
或col
超出矩阵的边界时,说明目标值不在矩阵中,返回false
。
复杂度分析
- 时间复杂度: O(m+n),其中
m
是矩阵的行数,n
是矩阵的列数。最坏情况下,每个方向(向左或向下)都只遍历一次。 - 空间复杂度: O(1),仅使用常量级别的空间来存储变量。
代码实现
package org.zyf.javabasic.letcode.hot100.matrix;
/**
* @program: zyfboot-javabasic
* @description: 搜索二维矩阵 II
* @author: zhangyanfeng
* @create: 2024-08-21 23:31
**/
public class SearchMatrixSolution {
public boolean searchMatrix(int[][] matrix, int target) {
// 获取矩阵的行数和列数
int m = matrix.length;
int n = matrix[0].length;
// 从矩阵的右上角开始
int row = 0;
int col = n - 1;
// 搜索矩阵
while (row < m && col >= 0) {
if (matrix[row][col] == target) {
return true; // 找到目标值
} else if (matrix[row][col] > target) {
col--; // 向左移动
} else {
row++; // 向下移动
}
}
// 目标值不在矩阵中
return false;
}
public static void main(String[] args) {
SearchMatrixSolution solution = new SearchMatrixSolution();
// Test Case 1
int[][] matrix1 = {
{1, 4, 7, 11, 15},
{2, 5, 8, 12, 19},
{3, 6, 9, 16, 22},
{10, 13, 14, 17, 24},
{18, 21, 23, 26, 30}
};
int target1 = 5;
System.out.println(solution.searchMatrix(matrix1, target1)); // Expected: true
// Test Case 2
int[][] matrix2 = {
{1, 4, 7, 11, 15},
{2, 5, 8, 12, 19},
{3, 6, 9, 16, 22},
{10, 13, 14, 17, 24},
{18, 21, 23, 26, 30}
};
int target2 = 20;
System.out.println(solution.searchMatrix(matrix2, target2)); // Expected: false
// Test Case 3
int[][] matrix3 = {
{1, 2},
{3, 4}
};
int target3 = 3;
System.out.println(solution.searchMatrix(matrix3, target3)); // Expected: true
// Test Case 4
int[][] matrix4 = {
{1}
};
int target4 = 0;
System.out.println(solution.searchMatrix(matrix4, target4)); // Expected: false
}
}
具体可参考:https://zyfcodes.blog.csdn.net/article/details/141401712