零、本节学习目标
- 了解RDD的处理过程
- 掌握转换算子的使用
- 掌握行动算子的使用
一、RDD的处理过程
- Spark用Scala语言实现了RDD的API,程序开发者可以通过调用API对RDD进行操作处理。RDD经过一系列的“转换”操作,每一次转换都会产生不同的RDD,以供给下一次“转换”操作使用,直到最后一个RDD经过“行动”操作才会被真正计算处理,并输出到外部数据源中,若是中间的数据结果需要复用,则可以进行缓存处理,将数据缓存到内存中。
二、RDD算子
- RDD被创建后是只读的,不允许修改。Spark提供了丰富的用于操作RDD的方法,这些方法被称为算子。一个创建完成的RDD只支持两种算子:转换(Transformation)算子和行动(Action)算子。
(一)转换算子
- RDD处理过程中的“转换”操作主要用于根据已有RDD创建新的RDD,每一次通过Transformation算子计算后都会返回一个新RDD,供给下一个转换算子使用。
- 常用转换算子操作的API
(二)行动算子
- 行动算子主要是将在数据集上运行计算后的数值返回到驱动程序,从而触发真正的计算。
- 常用行动算子操作的API
三、准备工作
(一)准备文件
1、准备本地系统文件
- 在
/home
目录里创建words.txt
2、把文件上传到HDFS
- 将
words.txt
上传到HDFS系统的/park
目录里 - 说明:
/park
是在上一讲我们创建的目录 - 查看文件内容
(二)启动Spark Shell
1、启动HDFS服务
- 执行命令:
start-dfs.sh
2、启动Spark服务
- 执行命令:
start-all.sh
3、启动Spark Shell
- 执行名命令:
spark-shell --master spark://master:7077
- 以集群模式启动的Spark Shell,不能访问本地文件,只能访问HDFS文件,加不加
hdfs://master:9000
前缀都是一样的效果。
四、掌握转换算子
- 转换算子负责对RDD中的数据进行计算并转换为新的RDD。Spark中的所有转换算子都是
惰性
的,因为它们不会立即计算结果,而只是记住
对某个RDD的具体操作过程,直到遇到行动算子才会与行动算子一起执行。
(一)映射算子 - map()
1、映射算子功能
- map()是一种转换算子,它接收一个函数作为参数,并把这个函数应用于RDD的每个元素,最后将函数的返回结果作为结果RDD中对应元素的值。
2、映射算子案例
- 预备工作:创建一个RDD - rdd1
- 执行命令:val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6))
任务1、将rdd1每个元素翻倍得到rdd2
-
对
rdd1
应用map()算子,将rdd1
中的每个元素平方并返回一个名为rdd2
的新RDD
-
上述代码中,向算子map()传入了一个函数
x = > x * 2
。其中,x
为函数的参数名称,也可以使用其他字符,例如a => a * 2
。Spark会将RDD中的每个元素传入该函数的参数中。 -
其实,利用神奇占位符
_
可以写得更简洁
rdd1
和rdd2
中实际上没有任何数据,因为parallelize()
和map()
都为转化算子,调用转化算子不会立即计算结果。
-
若需要查看计算结果,则可使用行动算子
collect()
。(collect是采集或收集之意) -
执行
rdd2.collect
进行计算,并将结果以数组
的形式收集到当前Driver
。因为RDD的元素为分布式的,数据可能分布在不同的节点上。
-
take action: 采取行动。心动不如行动。
-
上述使用
map()
算子的运行过程如下图所示
- 函数本质就是一种特殊的映射。上面这个映射写成函数:f ( x ) = 2 x , x ∈ R f(x)=2x,x\in \Bbb Rf(x)=2x,x∈R
任务2、将rdd1每个元素平方得到rdd2
-
方法一、采用普通函数作为参数传给map()算子
-
方法二、采用下划线表达式作为参数传给map()算子
-
刚才翻倍用的是
map(_ * 2)
,很自然地想到平方应该是map(_ * _)
- 报错,(_ * _)经过eta-expansion变成普通函数,不是我们预期的x => x * x,而是(x$1, x$2) => (x$1 * x$2),不是一元函数,而是二元函数,系统立马就蒙逼了,不晓得该怎么取两个参数来进行乘法运算。
- 难道就不能用下划线参数了吗?当然可以,但是必须保证下划线表达式里下划线只出现1次。引入数学包scala.math._就可以搞定。
- 但是有点美中不足,rdd2的元素变成了双精度实数,得转化成整数
任务3、利用映射算子打印菱形
- 菱形正立的等腰三角形和倒立的等腰三角形组合而成
- 半菱形
- 加上前导空格,显示菱形
- 参考代码(兼顾通用性)
import scala.collection.mutable.ListBuffer
val list = new ListBuffer[Int]()
val n = 21
(1 to n by 2).foreach(list += _)
(n - 2 to 1 by -2).foreach(list += _)
val rdd = sc.makeRDD(list)
val rdd1 = rdd.map(i => " " * ((n - i) / 2) + "*" * i)
rdd1.collect.foreach(println)
(2)在IDEA里创建项目实现
- 参照讲课笔记2.4创建Maven项目 -
SparkRDDDemo
- 单击【Finish】按钮
将java
目录改成scala
目录
- 在
pom.xml
文件里添加相关依赖和设置源程序目录
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.12.15</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.1.3</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
</build>
添加日志属性文件
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/rdd.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
- 创建
hdfs-site.xml
文件,允许客户端访问集群数据节点
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<property>
<description>only config in clients</description>
<name>dfs.client.use.datanode.hostname</name>
<value>true</value>
</property>
</configuration>
- 创建
net.zyf.rdd.day01
包
- 在
net.zyf.rdd.day01
包里创建Example01
单例对象
package net.zyf.rdd.day01
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
import scala.io.StdIn
/**
* 功能:打印钻石
* 作者:华卫
* 日期:2023年04月19日
*/
object Example01 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 输入一个奇数
print("输入一个奇数:")
val n = StdIn.readInt()
// 创建一个可变列表
val list = new ListBuffer[Int]()
// 给列表赋值
(1 to n by 2).foreach(list += _)
(n - 2 to 1 by -2).foreach(list += _)
// 基于列表创建rdd
val rdd = sc.makeRDD(list)
// 对rdd进行映射操作
val rdd1 = rdd.map(i => " " * ((n - i) / 2) + "*" * i)
// 输出rdd1结果
rdd1.collect.foreach(println)
}
}
- 运行程序,查看结果
假如用户输入一个偶数,会出现什么情况?
(二)过滤算子 - filter()
1、过滤算子功能
filter(func)
:通过函数func
对源RDD的每个元素进行过滤,并返回一个新RDD,一般而言,新RDD元素个数会少于原RDD。
2、过滤算子案例
-
基于列表创建RDD,然后利用过滤算子得到偶数构成的新RDD
-
方法一、将匿名函数传给过滤算子
方法二、用神奇占位符改写传入过滤算子的匿名函数
-
将
rdd1
里的每一个元素x
拿去计算x % 2 == 0
,如果关系表达式计算结果为真,那么该元素就丢进新RDD -rdd2
,否则就被过滤掉了。
-
查看源文件
/park/words.txt
内容
- 执行命令:
val lines= sc.textFile("/park/words.txt")
,读取文件/park/words.txt
生成RDD -lines
- 执行命令:
val sparkLines = lines.filter(_.contains("spark"))
,过滤包含spark
的行生成RDD -sparkLines
执行命令:sparkLines.collect
,查看sparkLines
内容,可以采用遍历算子,分行输出内容
课堂练习
任务1、利用过滤算子输出[2000, 2500]之间的全部闰年
-
传统做法,利用循环结构嵌套选择结构来实现
要求每行输出10个数
采用过滤算子来实现
要求每行输出10个数
任务2、利用过滤算子输出[10, 100]之间的全部素数
- 过滤算子:
filter(n => !(n % 2 == 0 || n % 3 == 0 || n % 5 == 0 || n % 7 == 0))
(三)扁平映射算子 - flatMap()
1、扁平映射算子功能
- flatMap()算子与map()算子类似,但是每个传入给函数func的RDD元素会返回0到多个元素,最终会将返回的所有元素合并到一个RDD。
2、扁平映射算子案例
-
读取文件,生成RDD -
rdd1
,查看其内容和元素个数
- 对于
rdd1
按空格拆分,做映射,生成新RDD -rdd2
- 对于
rdd1
按空格拆分,做扁平映射,生成新RDD -rdd3
,有一个降维处理的效果
方法一、利用Scala来实现
- 利用列表的
flatten
函数 - 在
net.huawei.rdd.day01
包里创建Example02
单例对象
package net.zyf.rdd.day01
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:利用scala统计不规则二维码列表元素个数
* 作者:zyf
* 日期:2023年04月24日
*/
object Example02 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 创建不规则二维列表
val mat = List(
List(7, 8, 1, 5),
List(10, 4, 9),
List(7, 2, 8, 1, 4),
List(21, 4, 7, -4)
)
// 输出二维列表
println(mat)
// 将二维列表扁平化为一维列表
val arr = mat.flatten
// 输出一维列表
println(arr)
// 输出元素个数
println("元素个数:" + arr.size)
}
}
运行程序,查看结果
方法二、利用Spark RDD来实现
- 利用flatMap算子
- 在
net.huawei.rdd.day01
包里创建Example03
单例对象
package net.zyf.rdd.day01
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:利用scala统计不规则二维码列表元素个数
* 作者:zyf
* 时间:2023年03月00号
*/
object Example03 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 创建不规则二维列表
val mat = List(
List(7, 8, 1, 5),
List(10, 4, 9),
List(7, 2, 8, 1, 4),
List(21, 4, 7, -4)
)
// 基于二维列表创建rdd1
val rdd1 = sc.makeRDD(mat)
// 输出rdd1
rdd1.collect.foreach(x => print(x + " "))
println()
// 进行扁平化映射
val rdd2 = rdd1.flatMap(x => x.toString.substring(5, x.toString.length - 1).split(", "))
// 输出rdd2
rdd2.collect.foreach(x => print(x + " "))
println()
// 输出元素个数
println("元素个数:" + rdd2.count)
}
}
运行程序,查看结果
扁平化映射可以简化
(四)按键归约算子 - reduceByKey()
1、按键归约算子功能
- reduceByKey()算子的作用对像是元素为(key,value)形式(Scala元组)的RDD,使用该算子可以将相同key的元素聚集到一起,最终把所有相同key的元素合并成一个元素。该元素的key不变,value可以聚合成一个列表或者进行求和等操作。最终返回的RDD的元素类型和原有类型保持一致。
2、按键归约算子案例
- 成绩表,包含四个字段(姓名、语文、数学、英语),只有三条记录
- 创建成绩列表
scores
,基于成绩列表创建rdd1
,对rdd1
按键归约得到rdd2
,然后查看rdd2
内容
- 不仅可以在Spark Shell里完成任务,也可以编写Scala程序生成jar提交到Spark服务器运行。有兴趣的同学不妨参看《Spark案例:两种方式计算学生总分》
- 成绩表,包含四个字段(姓名、语文、数学、英语),只有三条记录
-
可能存在问题:在Windows下的IDEA中访问HDFS报错
Could not locate executable null\bin\winutils.exe
-
下载对应版本的
winutils.exe
,放在hadoop安装目录的bin
子目录里
- 创建Maven项目 - SparkRDDDemo
- 创建
net.hw.rdd
包
第一种方式:读取二元组成绩列表
- 在
net.hw.rdd
包里创建CalculateScoreSum
单例对象
package net.zyf.rdd.day02
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:计算总分
* 作者:zyf
* 时间:2023年04月24号
*/
object CalculateScoreSum {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("CalculateScoreSum")
.setMaster("local[*]")
// 基于配置创建Spark上下文
val sc = new SparkContext(conf)
// 创建成绩列表
val scores = List(
("张钦林", 78), ("张钦林", 90), ("张钦林", 76),
("陈燕文", 95), ("陈燕文", 88), ("陈燕文", 98),
("卢志刚", 78), ("卢志刚", 80), ("卢志刚", 60)
)
// 基于成绩列表创建RDD
val rdd1 = sc.makeRDD(scores)
// 对成绩RDD进行按键归约处理
val rdd2 = rdd1.reduceByKey((x, y) => x + y)
// 输出归约处理结果
rdd2.collect.foreach(println)
}
}
- 运行程序,查看结果
第二种方式:读取四元组成绩列表
- 在
net.hw.rdd
包里创建CalculateScoreSum02
单例对象
package net.zyf.rdd.day02
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
/**
* 功能:计算总分
* 作者:zyf
* 时间:2023年03月00号
*/
object CalculateScoreSum02 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("CalculateScoreSum")
.setMaster("local[*]")
// 基于配置创建Spark上下文
val sc = new SparkContext(conf)
// 创建四元组成绩列表
val scores = List(
("张钦林", 78, 90, 76),
("陈燕文", 95, 88, 98),
("卢志刚", 78, 80, 60)
)
// 将四元组成绩列表转化成二元组成绩列表
val newScores = new ListBuffer[(String, Int)]();
// 通过遍历算子遍历四元组成绩列表
scores.foreach(score => {
newScores += Tuple2(score._1, score._2)
newScores += Tuple2(score._1, score._3)
newScores += Tuple2(score._1, score._4)}
)
// 基于二元组成绩列表创建RDD
val rdd1 = sc.makeRDD(newScores)
// 对成绩RDD进行按键归约处理
val rdd2 = rdd1.reduceByKey((x, y) => x + y)
// 输出归约处理结果
rdd2.collect.foreach(println)
}
}
- 运行程序,查看结果
第三种情况:读取HDFS上的成绩文件
- 在master虚拟机的
/home
目录里创建成绩文件 -scores.txt
- 将成绩文件上传到HDFS的
/input
目录
- 在
net.zyf.rdd.day02
包里创建CalculateScoreSum03
单例对象
package net.zyf.rdd.day02
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ListBuffer
/**
* 功能:计算总分
* 作者:zyf
* 日期:2023年04月26日
*/
object CalculateScoreSum03 {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 读取成绩文件,生成RDD
val lines = sc.textFile("hdfs://master:9000/input/scores.txt")
// 定义二元组成绩列表
val scores = new ListBuffer[(String, Int)]()
// 遍历lines,填充二元组成绩列表
lines.collect.foreach(line => {
val fields = line.split(" ")
scores.append(Tuple2(fields(0), fields(1).toInt))
scores.append(Tuple2(fields(0), fields(2).toInt))
scores.append(Tuple2(fields(0), fields(3).toInt))
})
// 基于二元组成绩列表创建RDD
val rdd1 = sc.makeRDD(scores)
// 对成绩RDD进行按键归约处理
val rdd2 = rdd1.reduceByKey(_ + _)
// 输出归约处理结果
rdd2.collect.foreach(println)
}
}
- 运行程序,查看结果
- 修改程序,将计算结果写入HDFS文件
- 查看HDFS上生成的结果文件
- 思考题:计算每个人的平均分(双精度)
- 显示姓名、总分和平均分
- 平均分保留两位小数,怎么实现?
(五)合并算子 - union()
1、合并算子功能
union()
算子将两个RDD合并为一个新的RDD,主要用于对不同的数据来源进行合并,两个RDD中的数据类型要保持一致。
2、合并算子案例
- 创建两个RDD,合并成一个新RDD
- 课堂练习:将两个二元组成绩表合并
- 在集合运算里,并集符号:∪ \cup∪,并集运算:A ∪ B A \cup BA∪B
- 在集合运算里,交集符号:∩ \cap∩,交集运算:A ∩ B A \cap BA∩B
- 在集合运算里,补集运算:A ˉ \bar A
(六)排序算子 - sortBy()
1、排序算子功能
- sortBy()算子将RDD中的元素按照某个规则进行排序。该算子的第一个参数为排序函数,第二个参数是一个布尔值,指定升序(默认)或降序。若需要降序排列,则需将第二个参数置为false。
2、排序算子案例
- 一个数组中存放了三个元组,将该数组转为RDD集合,然后对该RDD按照每个元素中的第二个值进行降序排列。
sortBy(x=>x._2,false)
中的x代表rdd1中的每个元素。由于rdd1的每个元素是一个元组,因此使用x._2
取得每个元素的第二个值。当然,sortBy(x=>x._2,false)
也可以直接简化为sortBy(_._2,false)
。
(七)按键排序算子 - sortByKey()
1、按键排序算子功能
sortByKey()
算子将(key, value)
形式的RDD按照key进行排序。默认升序,若需降序排列,则可以传入参数false
。
2、按键排序算子案例
- 将三个二元组构成的RDD按键先降序排列,然后升序排列
其实,用排序算子也是可以搞定的
(八)连接算子
1、内连接算子 - join()
(1)内连接算子功能
join()
算子将两个(key, value)形式的RDD根据key进行连接操作,相当于数据库的内连接(Inner Join
),只返回两个RDD都匹配的内容。
- 将rdd1与rdd2进行内连接,满足交换律
2、左外连接算子 - leftOuterJoin()
(1)左外连接算子功能
- leftOuterJoin()算子与数据库的左外连接类似,以左边的RDD为基准(例如rdd1.leftOuterJoin(rdd2),以rdd1为基准),左边RDD的记录一定会存在。例如,rdd1的元素以(k,v)表示,rdd2的元素以(k, w)表示,进行左外连接时将以rdd1为基准,rdd2中的k与rdd1的k相同的元素将连接到一起,生成的结果形式为(k, (v, Some(w))。rdd1中其余的元素仍然是结果的一部分,元素形式为(k,(v, None)。Some和None都属于Option类型,Option类型用于表示一个值是可选的(有值或无值)。若确定有值,则使用Some(值)表示该值;若确定无值,则使用None表示该值。
(2)左外连接算子案例
- rdd1与rdd2进行左外连接
3、右外连接算子 - rightOuterJoin()
(1)右外连接算子功能
- rightOuterJoin()算子的使用方法与leftOuterJoin()算子相反,其与数据库的右外连接类似,以右边的RDD为基准(例如rdd1.rightOuterJoin(rdd2),以rdd2为基准),右边RDD的记录一定会存在。
(2)右外连接算子案例
- rdd1与rdd2进行右外连接
4、全外连接算子 - fullOuterJoin()
- fullOuterJoin()算子与数据库的全外连接类似,相当于对两个RDD取并集,两个RDD的记录都会存在。值不存在的取None。
- rdd1与rdd2进行全外连接
(九)交集算子 - intersection()
1、交集算子功能
- intersection()算子对两个RDD进行交集操作,返回一个新的RDD。要求两个算子类型要一致。
2、交集算子案例
-
rdd1与rdd2进行交集操作
- A ∩ B ≠ ϕ
(十)去重算子 - distinct()
1、去重算子功能
distinct()
算子对RDD中的数据进行去重操作,返回一个新的RDD。有点类似与集合的不允许重复元素。
2、去重算子案例
- 去掉rdd中重复的元素
3、IP地址去重案例
- 在项目根目录创建
ips.txt
文件
192.168.234.21
192.168.234.22
192.168.234.21
192.168.234.21
192.168.234.23
192.168.234.21
192.168.234.21
192.168.234.21
192.168.234.25
192.168.234.21
192.168.234.21
192.168.234.26
192.168.234.21
192.168.234.27
192.168.234.21
192.168.234.27
192.168.234.21
192.168.234.29
192.168.234.21
192.168.234.26
192.168.234.21
192.168.234.25
192.168.234.25
192.168.234.21
192.168.234.22
192.168.234.21
在net.zyf.rdd.day03
包里创建DistinctIPs
单例对象
package net.zyf.rdd.day03
import org.apache.spark.{SparkConf, SparkContext}
/**
* 功能:IP地址去重
* 作者:zyf
* 日期:2023年04月26日
*/
object DistinctIPs {
def main(args: Array[String]): Unit = {
// 创建Spark配置对象
val conf = new SparkConf()
.setAppName("PrintDiamond") // 设置应用名称
.setMaster("local[*]") // 设置主节点位置(本地调试)
// 基于Spark配置对象创建Spark容器
val sc = new SparkContext(conf)
// 读取本地IP地址文件,得到RDD
val ips = sc.textFile("file:///SparkRDDDemo/ips.txt")
// rdd去重再输出
ips.distinct.collect.foreach(println)
}
}
- 运行程序,查看结果
- 修改代码,保存去重结果到本地目录
- 运行程序,查看结果文件
(十一)组合分组算子 - cogroup()
1、组合分组算子功能
- cogroup()算子对两个(key, value)形式的RDD根据key进行组合,相当于根据key进行并集操作。例如,rdd1的元素以(k, v)表示,rdd2的元素以(k, w)表示,执行rdd1.cogroup(rdd2)生成的结果形式为(k, (Iterable<v>, Iterable<w>))。
2、组合分组算子案例
- rdd1与rdd2进行组合分组操作
五、掌握行动算子
- Spark中的转化算子并不会马上进行运算,而是在遇到行动算子时才会执行相应的语句,触发Spark的任务调度。
(一)归约算子 - reduce()
1、归约算子功能
- reduce()算子按照传入的函数进行归约计算
2、归约算子案例
-
计算1 + 2 + 3 + … … + 100 1 + 2 + 3 + …… + 1001+2+3+……+100的值
计算1 2 + 2 2 + 3 2 + 4 2 + 5 2 1^2 + 2^2 + 3^2 + 4^2 + 5^21
(三)按键计数算子 - countByKey()
1、按键计数算子功能
- 按键统计RDD键值出现的次数,返回由键值和次数构成的映射。
2、按键计数算子案例
- List集合中存储的是键值对形式的元组,使用该List集合创建一个RDD,然后对其进行countByKey()的计算。
(四)前截取算子 - take(n)
1、前截取算子功能
- 返回RDD的前n个元素(同时尝试访问最少的partitions),返回结果是无序的,测试使用。
2、前截取算子案例
- 返回集合中前5个元素组成的数组
(五)遍历算子 - foreach()
1、遍历算子功能
- 计算 RDD中的每一个元素,但不返回本地(只是访问一遍数据),可以配合println()友好打印数据。
2、遍历算子案例
- 将RDD里的每个元素平方后输出
(六)存文件算子 - saveAsFile()
1、存文件算子功能
- 将RDD数据保存到本地文件或HDFS文件
2、存文件算子案例
- 将rdd内容保存到HDFS的/park/out.txt