一 .枚举子集
集合:3种性质:互异性,确定性,无序性;其中的 "东西" 称为"元素"(例:A={1,2,3});
子集:对于两个非空集合A与B,如果集合A的任何一个元素都是集合B的元素,称集合A是集合B的子集;
空集:一种特殊的集合,不包含任何元素;
例题——枚举子集
题目描述
给定 𝑛 个元素,输出 𝑛 个元素构成的集合的所有子集。
简化:以 𝑛 个连续的 0/1
代表第 𝑖 个元素是否选中(0
:未选中,1
:选中)。
输入格式
一行,一个正整数 𝑛(𝑛<20)。
输出格式
输出共 2𝑛 行,每行一个 0/1
构成的字符串,表示子集。
按字典序输出。
样例输入 #1
4
样例输出 #1
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
题解
#include<bits/stdc++.h>
using namespace std;
int n,box[32];
void dfs(int a){
if(a==n+1){
for(int i=1;i<=n;i++){
cout<<box[i];
}
cout<<"\n";
return;
}
for(int i=0;i<2;i++){
box[a]=i;
dfs(a+1);
}
}
int main(){
cin>>n;
dfs(1);
return 0;
}
枚举排列组合
很简单,和数学差不多,直接上题;
[2004J4]火星人
题目背景
人类终于登上了火星的土地并且见到了神秘的火星人。人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法。这种交流方法是这样的,首先,火星人把一个非常大的数字告诉人类科学家,科学家破解这个数字的含义后,再把一个很小的数字加到这个大数上面,把结果告诉火星人,作为人类的回答。
题目描述
火星人用一种非常简单的方式来表示数字――掰手指。火星人只有一只手,但这只手上有成千上万的手指,这些手指排成一列,分别编号为 1,2,3,⋯。火星人的任意两根手指都能随意交换位置,他们就是通过这方法计数的。
一个火星人用一个人类的手演示了如何用手指计数。如果把五根手指――拇指、食指、中指、无名指和小指分别编号为 1,2,3,4和 5,当它们按正常顺序排列时,形成了 5 位数 12345,当你交换无名指和小指的位置时,会形成 55 位数 1235412354,当你把五个手指的顺序完全颠倒时,会形成 54321,在所有能够形成的 120 个 5 位数中,12345 最小,它表示 1;12354 第二小,它表示 2;54321 最大,它表示 120。下表展示了只有 3 根手指时能够形成的 6 个 3 位数和它们代表的数字:
三进制数 | 代表的数字 |
---|---|
123123 | 11 |
132132 | 22 |
213213 | 33 |
231231 | 44 |
312312 | 55 |
321321 | 66 |
现在你有幸成为了第一个和火星人交流的地球人。一个火星人会让你看他的手指,科学家会告诉你要加上去的很小的数。你的任务是,把火星人用手指表示的数与科学家告诉你的数相加,并根据相加的结果改变火星人手指的排列顺序。输入数据保证这个结果不会超出火星人手指能表示的范围。
输入格式
共三行。
第一行一个正整数 𝑁,表示火星人手指的数目(1≤𝑁≤10000)。
第二行是一个正整数 𝑀,表示要加上去的小整数(1≤𝑀≤100)。
下一行是 1 到 𝑁 这 𝑁 个整数的一个排列,用空格隔开,表示火星人手指的排列顺序
输出格式
𝑁 个整数,表示改变后的火星人手指的排列顺序。每两个相邻的数中间用一个空格分开,不能有多余的空格。
样例输入 #1
5
3
1 2 3 4 5
样例输出 #1
1 2 4 5 3
题解
#include<bits/stdc++.h>
using namespace std;
int a[10005];
int main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>a[i];
}
for(int i=1;i<=m;i++){
next_permutation(a+1,a+n+1);//STL的函数,找到当前数组范围的的下一个排列,并将数组改变
}
for(int i=1;i<=n;i++)cout<<a[i]<<" ";
return 0;
}