考试排名(YACS)

题目描述

某学校的某次考试成绩以等第形式出现的,每名学生的成绩都是ABCD 中的一个。

学校有 n 个班级,小爱想根据这次考试中 A 的比例,从高到低为这些班级排序;若出现两个班级 A 的比例相同,就按 B 的比例从高到低排序;若再相同,就按照 C 的比例;若再相同,就按照班级人数从大到小排序;若再相同,就按照班级编号从小到大排序。

请帮助小爱完成这个任务。

输入格式

第一行:单个整数 n。
第二行到第 n+1 行:第 i+1行有一个字符串,表示第 i 个班级的学生成绩,每个字符代表一个学生的成绩。

输出格式

只有一行:按照班级排名先后顺序输出 n 个整数,每个整数代表一个班级的编号。

数据范围
  • 对于 50% 的数据,1≤n≤100;
  • 对于 100%的数据,1≤n≤10000,且每个班级人数不超过 100 人。
样例1

输入:

3
ABAACAA
DDABBB
BABABA

输出:

1 3 2

 说明:1班的A比例最高,3班第二,2班最低

样例2 

 输入:

3
ABCD
ABCDABCD
AABBCCDD

 输出:

2 3 1

 说明:2班3班各项分数比例相同且人数高于1班

题解在此:
#include<bits/stdc++.h>
using namespace std;
struct node{
	float a,b,c;
	int stu,num;
}cl[10005];
bool cmp(node n,node m){
	if(n.a!=m.a)return n.a<m.a;
	if(n.b!=m.b)return n.b<m.b;
	if(n.c!=m.c)return n.c<m.c;
	if(n.stu!=m.stu)return n.stu>m.stu;
	return n.num<m.num;
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++){
		string s;
		cin>>s;
		cl[i].num=i;
		cl[i].stu=s.length();
		for(int j=0;j<s.length();j++){
			if(s[j]=='A')cl[i].a+=1;
			else if(s[j]=='B')cl[i].b+=1;
			else if(s[j]=='C')cl[i].c+=1;
		}
		cl[i].a=cl[i].stu/cl[i].a;
		cl[i].b=cl[i].stu/cl[i].b;
		cl[i].c=cl[i].stu/cl[i].c;
	}
	sort(cl+1,cl+n+1,cmp);
	for(int i=1;i<=n;i++)cout<<cl[i].num<<" ";
	return 0;
}

 考试排名icon-default.png?t=N7T8https://iai.sh.cn/problem/429

03-08
### YACS 库简介 YACS (Yet Another Configuration System)一个轻量级的配置管理系统,旨在与其他开源项目结合使用,以提高项目的可配置性和可扩展性[^1]。该库提供了简洁的 API,使得加载、访问和修改配置选项变得非常容易,从而更好地组织和管理项目配置,提升代码的可读性和可维护性[^2]。 ### 安装 YACS 为了开始使用 YACS,首先需要安装这个 Python 库。可以通过 pip 工具轻松完成这一操作: ```bash pip install yacs ``` ### 创建并使用配置文件 创建一个新的配置对象通常涉及以下几个方面的工作流程: - **导入必要的包** 导入 `yacs.config` 中的 `CfgNode` 类来初始化配置节点。 ```python from yacs.config import CfgNode as CN ``` - **构建默认配置树** 构建一个包含默认参数设置的基础配置结构。 ```python _C = CN() # 添加一些简单的键值对作为示例 _C.TRAIN = CN() _C.TRAIN.BATCH_SIZE = 8 _C.TRAIN.EPOCHS = 90 _C.MODEL = CN() _C.MODEL.NAME = 'resnet50' ``` - **从外部源加载配置更新** 可以通过多种方式加载额外的配置覆盖现有设定,比如从 YAML 文件或者命令行参数传入新的配置项。 ```python cfg.merge_from_file('path/to/config.yaml') cfg.freeze() # 锁定配置防止进一步更改 ``` - **保存当前配置到磁盘** 当希望记录下运行时所使用的具体配置以便日后重现实验结果时,可以将整个配置导出成字符串形式再写入文件中去。 ```python with open('output_config.yaml', 'w') as f: f.write(cfg.dump()) ``` ### 实际应用案例 多个知机器学习框架已经集成了 YACS 来实现更灵活高效的超参调整机制。例如,在 Facebook AI Research 推出的目标检测平台 Detectron2 和 MMDetection 这样的目标检测工具箱里都采用了 YACS 负责解析复杂的模型训练配置;而在 PyTorch Lightning 上也能见到它的身影,用来简化深度学习模型开发过程中涉及到的各种设置管理工作。 ### 结合 PyTorch 使用 当与 PyTorch 搭配工作时,YACS 特别适合于那些依赖大量超参数调节的任务场景,如图像分类、物体定位等计算机视觉领域内的挑战。借助其强大的功能特性,研究人员不仅能够快速搭建起原型系统来进行初步探索,而且还能确保最终版本具备良好的通用性和移植能力[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值