题目:
一个分数一般写成两个整数相除的形式:N/M,其中M不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为K的最简分数。
输入格式:
输入在一行中按N/M的格式给出两个正分数,随后是一个正整数分母K,其间以空格分隔。题目保证给出的所有整数都不超过1000。
输出格式:
在一行中按N/M的格式列出两个给定分数之间分母为K的所有最简分数,按从小到大的顺序,其间以1个空格分隔。行首尾不得有多余空格。题目保证至少有1个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
解答:
#include<iostream>
using namespace std;
int gcd(int a, int b)//求最大公约数//***
{
return b == 0 ? a : gcd(b, a%b);//***
}
int main()
{
int n1, m1, n2, m2, k;
scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k);
if (n1 * m2 > n2 * m1) {
swap(n1, n2);
swap(m1, m2);
}
//int a = n1 * m2;
//int b = n2 * m1;
//int c = m1*m2;
//bool flag = false;
//for (int i = a*k; i <= b*k; i++)
//{
// if (i % c == 0 && (gcd(i / c, k) == 1))
// {
// printf("%s%d/%d", flag == true ? " " : "", i / (m1*m2), k);
// flag = true;
// }
//}//该方法有一个运行时间超时,下面这个就不会
int num = 1;
bool flag = false;//###
while (n1 * k >= m1 * num) num++;//找到最小的num值
while (n1 * k < m1 * num && m2 * num < n2 * k) //限制num范围
{
if (gcd(num, k) == 1) {
printf("%s%d/%d", flag == true ? " " : "", num, k);//###
flag = true;
}
num++;
}
return 0;
}
//***记住求两个数最大公约数的写法
//###一个巧妙的防止行首末出现空格的方法