最优化方法python教程_Scipy优化算法--scipy.optimize.fmin_tnc()/minimize()

本文介绍了Scipy optimize子包中的fmin_tnc和minimize函数,用于解决有约束的多元函数优化问题。fmin_tnc使用截断牛顿法,需要提供梯度信息;minimize是一个通用的优化函数,支持多种算法,包括TNC。通过实例展示了这两个函数的调用方式及返回结果。
摘要由CSDN通过智能技术生成

scipy中的optimize子包中提供了常用的最优化算法函数实现,我们可以直接调用这些函数完成我们的优化问题。

scipy.optimize包提供了几种常用的优化算法。 该模块包含以下几个方面

使用各种算法(例如BFGS,Nelder-Mead单纯形,牛顿共轭梯度,COBYLA或SLSQP)的无约束和约束最小化多元标量函数(minimize())

全局(蛮力)优化程序(例如,anneal(),basinhopping())

最小二乘最小化(leastsq())和曲线拟合(curve_fit())算法

标量单变量函数最小化(minim_scalar())和根查找(newton())

使用多种算法(例如,Powell,Levenberg-Marquardt混合或Newton-Krylov等大规模方法)的多元方程系统求解

在用python实现逻辑回归和线性回归时,使用梯度下降法最小化cost function,用到了fmin_tnc()和minimize()。

一、fmin_tnc()

有约束的多元函数问题,提供梯度信息,使用截断牛顿法。

调用:

scipy.optimize.fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, epsilon=1e-08, scale=None, offset=None, messages=15, maxCGit=-1, maxfun=None, eta=-1, stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值