leetcode每日一题(11.10)----获取所有钥匙的最短路径

该博客讨论了一种解决二维网格中从起点出发获取所有钥匙的最短路径问题的算法。算法使用广度优先搜索(BFS)策略,通过一个状态表示已收集的钥匙,并维护一个距离矩阵来跟踪到达各个位置的最短步数。当找到所有钥匙的路径时,返回步数,否则返回-1。该问题涉及到图论和搜索算法。
摘要由CSDN通过智能技术生成

给定一个二维网格 grid ,其中:

  • '.' 代表一个空房间
  • '#' 代表一堵
  • '@' 是起点
  • 小写字母代表钥匙
  • 大写字母代表锁

我们从起点开始出发,一次移动是指向四个基本方向之一行走一个单位空间。我们不能在网格外面行走,也无法穿过一堵墙。如果途经一个钥匙,我们就把它捡起来。除非我们手里有对应的钥匙,否则无法通过锁。

假设 k 为 钥匙/锁 的个数,且满足 1 <= k <= 6,字母表中的前 k 个字母在网格中都有自己对应的一个小写和一个大写字母。换言之,每个锁有唯一对应的钥匙,每个钥匙也有唯一对应的锁。另外,代表钥匙和锁的字母互为大小写并按字母顺序排列。

返回获取所有钥匙所需要的移动的最少次数。如果无法获取所有钥匙,返回 -1 。

class Solution {
public:
    int shortestPathAllKeys(vector<string>& grid) {
        int m = grid.size(), n = grid[0].size();
        int sx = 0, sy = 0;
        unordered_map<char, int> key_to_idx;
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                if (grid[i][j] == '@') {
                    sx = i;
                    sy = j;
                }
                else if (islower(grid[i][j])) {
                    if (!key_to_idx.count(grid[i][j])) {
                        int idx = key_to_idx.size();
                        key_to_idx[grid[i][j]] = idx;
                    }
                }
            }
        }

        queue<tuple<int, int, int>> q;
        vector<vector<vector<int>>> dist(m, vector<vector<int>>(n, vector<int>(1 << key_to_idx.size(), -1)));
        q.emplace(sx, sy, 0);
        dist[sx][sy][0] = 0;
        while (!q.empty()) {
            auto [x, y, mask] = q.front();
            q.pop();
            for (int i = 0; i < 4; ++i) {
                int nx = x + dirs[i][0];
                int ny = y + dirs[i][1];
                if (nx >= 0 && nx < m && ny >= 0 && ny < n && grid[nx][ny] != '#') {
                    if (grid[nx][ny] == '.' || grid[nx][ny] == '@') {
                        if (dist[nx][ny][mask] == -1) {
                            dist[nx][ny][mask] = dist[x][y][mask] + 1;
                            q.emplace(nx, ny, mask);
                        }
                    }
                    else if (islower(grid[nx][ny])) {
                        int idx = key_to_idx[grid[nx][ny]];
                        if (dist[nx][ny][mask | (1 << idx)] == -1) {
                            dist[nx][ny][mask | (1 << idx)] = dist[x][y][mask] + 1;
                            if ((mask | (1 << idx)) == (1 << key_to_idx.size()) - 1) {
                                return dist[nx][ny][mask | (1 << idx)];
                            }
                            q.emplace(nx, ny, mask | (1 << idx));
                        }
                    }
                    else {
                        int idx = key_to_idx[tolower(grid[nx][ny])];
                        if ((mask & (1 << idx)) && dist[nx][ny][mask] == -1) {
                            dist[nx][ny][mask] = dist[x][y][mask] + 1;
                            q.emplace(nx, ny, mask);
                        }
                    }
                }
            }
        }
        return -1;
    }

private:
    static constexpr int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值