给定一个整数数组 arr,找到 min(b) 的总和,其中 b 的范围为 arr 的每个(连续)子数组。
由于答案可能很大,因此 返回答案模 10^9 + 7 。
示例 1:
输入:arr = [3,1,2,4]
输出:17
解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。
示例 2:
输入:arr = [11,81,94,43,3] 输出:444
class Solution {
public:
int sumSubarrayMins(vector<int>& arr) {
int n = arr.size();
vector<int> monoStack;
vector<int> left(n), right(n);
for (int i = 0; i < n; i++) {
while (!monoStack.empty() && arr[i] <= arr[monoStack.back()]) {
monoStack.pop_back();
}
left[i] = i - (monoStack.empty() ? -1 : monoStack.back());
monoStack.emplace_back(i);
}
monoStack.clear();
for (int i = n - 1; i >= 0; i--) {
while (!monoStack.empty() && arr[i] < arr[monoStack.back()]) {
monoStack.pop_back();
}
right[i] = (monoStack.empty() ? n : monoStack.back()) - i;
monoStack.emplace_back(i);
}
long long ans = 0;
long long mod = 1e9 + 7;
for (int i = 0; i < n; i++) {
ans = (ans + (long long)left[i] * right[i] * arr[i]) % mod;
}
return ans;
}
};