E. 向量5(友元类)

本文介绍了一段C++代码,用于实现一个CMatrix类,该类能够处理n阶矩阵,并且作为CVector类的友元,可以进行矩阵与向量的乘法操作。代码中包含了矩阵与向量乘法的实现、矩阵构造和析构函数,以及判断矩阵与向量是否可乘的函数。此外,还提供了测试用例来验证矩阵与向量乘积的计算。
摘要由CSDN通过智能技术生成
题目描述



(1)在向量CVector类的代码上,定义n阶矩阵类CMatrix,包含私有数据成员data存储矩阵数据,n存储矩阵阶数。

(2)将CMatrix定义为CVector的友元类。

(3)为CMatrix添加成员函数:CVector multi(const CVector &v1),计算n阶矩阵与n维向量v1的乘积。

(4)为CMatrix添加成员函数,判定矩阵与向量v1是否可计算乘积。

(5)为CMatrix添加需要的构造函数、析构函数和其它成员函数。

主函数输入数据,测试矩阵与向量的乘积。

输入

测试次数t

对每组测试数据,格式如下

第一行,矩阵阶数n  向量维数m

n阶矩阵

m维向量


输出

对每组测试数据,若矩阵与向量不能计算乘积,输出error;否则输出计算结果


输入样例1 
1
3
1 0 0
0 1 0
0 0 1
3
1 2 3

输出样例1
1 2 3

 

该代码较冗长的原因是与前面题目向量1234的代码结合了

该题难点在于实现n阶矩阵与m维向量的乘法

我们使用一个嵌套循环实现

    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            num[i] += (data[i][j] * datav[j]);//注意这里面的逻辑关系
        }              
    }

数组num存放相乘后的向量
#include<iostream>
#include<string>
#include<iomanip>
#include<cstring>
using namespace std;
class cvector
{
private:
    static int sum;
    int* data;
    int n;
    friend class cmatrix;
public:
    int getn()
    {
        return n;
    }
    int* getdata()
    {
        return data;
    }
    float Average();
    friend cvector add(const cvector v1, const cvector v2);
    cvector() { ; }
    cvector(int n1, int* a)
    {
        n = n1;
        data = new int[n];
        for (int i = 0; i < n1; i++)
        {
            data[i] = a[i];
        }
    }
    //~cvector() { delete[]data; }
    void print();
    void init(int n1, int* a);
    void init2()
    {
        sum = 0;
    }
    static int pr_sum()
    {
        return sum;
    }
};

class student
{
private:
    string name;
    cvector score;
public:
    student(string name, int n1, int* a1);
    void print();
};

class cmatrix
{
private:
    int** data;
    int n;
public:

    cmatrix(int n1,int **ma);
    cvector multi(const cvector& v1);
    bool check(cvector& v1);
};

int cvector::sum = 0;

cvector cmatrix::multi(const cvector& v1)
{
    int* datav = v1.data;
    int* num = new int[n];
    for (int i = 0; i < n; i++)//先初始化
    {
        num[i] = 0;
    }
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            num[i] += (data[i][j] * datav[j]);//注意这里面的逻辑关系
        }
    }
    cvector ans(n, num);
    return ans;
    //cout << num[0];
    //for (int i = 1; i < n; i++)
    //{
    //    cout << ' ' << num[i];
    //}
}

cmatrix::cmatrix(int n1, int** ma)
{
    n = n1;
    data = new int* [n];
    for (int i = 0; i < n; i++)
    {
        data[i] = new int[n];
    }
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < n; j++)
        {
            data[i][j] = ma[i][j];
        }
    }

}


bool cmatrix::check(cvector& v1)
{
    return v1.getn() == n ? true : false;
}

student::student(string name, int n1, int* a1)
{
    score.init2();
    this->name = name;
    score.init(n1, a1);
}

void student::print()
{
    cout << name<<' ';
    score.print();
    cout <<' ' << fixed << setprecision(2) << score.Average() << endl;
}

float cvector::Average()
{
    float av = 1.0*sum / this->n;
    return av;
}

void cvector::init(int n1, int* a)
{
    n = n1;
    data = new int[n];
    for (int i = 0; i < n1; i++)
    {
        data[i] = a[i];
        sum += data[i];
    }
}
cvector add(const cvector v1, const cvector v2)
{
    int sum=v1.n;
    int num[100];
    for (int i = 0; i < sum; i++)
    {
        num[i] = v1.data[i] + v2.data[i];
    }
    cvector c(sum, num);
    return c;
}
void cvector::print()
{
    cout << data[0];
    for (int i = 1; i < n; i++)
    {
        cout << ' ' << data[i];
    }
}

int main()
{
    int t,n,m;
    cin >> t;
    while (t--)
    {
        cin >> n;
        int** ma = new int* [n];
        for (int i = 0; i < n; i++)
        {
            ma[i] = new int[n];
        }
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                cin >> ma[i][j];
            }
        }
        cin >> m;
        int* num = new int[m];
        for (int i = 0; i < m; i++)
        {
            cin >> num[i];
        }
        cvector v(m, num);
        cmatrix mtx(n, ma);
        if (n != m)
        {
            cout << "error" << endl;
        }
        else
        {
            cvector ans=mtx.multi(v);
            ans.print();
        }

        delete[]num;
        for (int i = 0; i < n; i++)
        {
            delete ma[i];
        }
        delete[]ma;
    }
    return 0;
}

实现有两个类 CVector 存放数据的自定义动态数组,采用一维动态数组存储矩阵数据 CMatrix 实现的矩阵类 使用的时候包含#include "Matrix.h"就行 CMatrix的接口函数都在"Matrix.h"里面 CVector的接口函数在"Vector.h"里,"Matrix.h"里包含了"Vector.h" 具体用法与测试用例Main.cpp里有3个测试用例,分别是针对构造函数属性计算与运算符重载的 内已包含测试工程xp\vc6.0\上亲测通过,并经过BoundsChecker测试没有内存泄漏。有兴趣的童鞋可以下作参考。 注意: 1、下标都是从0开始,数学课上矩阵下标都是从1开始,但是工作后习惯0开始,矩阵M的第一个元素是M(0,0) 2、类型定死为double,原来作业是模板类,由于vc6对模版支持不好,另矩阵计算double类比较理想、整型几乎只能作加减 提供了多种初始化方式,int[]、float[]、double[]均可构造初始化,或则先构造出CVector再由CVector初始化。 3、定义了一个最大允许误差#define permit_eof (1.0e-13),判断相等使用宏 #define EQUAL(a,b) ( ((b) - (a) < permit_eof)&&((a) - (b) < permit_eof) ? (TRUE) : (FALSE) ) 正常输出的时候绝对值小于permit_eof 的时候清零处理,想要指定精度输出请用PrintOut 鸣谢:CSDN上supermegaboy君的C/C++左值性精髓,读后略有所感,空闲时重构了下大学时的作业,着重区分了函数返回值的左右值 =================================================附录:接口函数========================================================================== 开放的接口: CVector //构造函数 CVector(); virtual ~CVector(); CVector(const size_t &nSize;); CVector(const CVector & vIn);//拷贝构造函数 CVector(const double* const pData,const size_t &nSize;); CVector(const float* const pData,const size_t &nSize;); CVector(const int* const pData,const size_t &nSize;); //公开的成员函数 double at(const size_t& uIndex)const;//作右值 BOOL push_back(const double& dbIn ); BOOL resize(const size_t& nSize); size_t size()const; //重载操作符 double& operator()(const UINT& uIndex);//重载()运算符,可作左值 //重载的运算符 double& operator()(const size_t& xr,const size_t& xc);//重载()运算符,可作左值 CVector& operator=(const CVector &);//重载=运算符 double operator*(const CVector & )const;//重载*运算符,两向量相乘 CVector operator*(const double α)const;//重载*运算符,向量乘以实数alpha CVector& operator*=(const double α);//重载*=算符,向量乘以实数alpha CVector operator+(const CVector & )const;//重载+运算符,向量加上向量 CVector& operator+=(const CVector & );//重载+=算符,向量加上向量 CVector operator-(const CVector & )const;//重载+运算符,向量加上向量 CVector& operator-=(const CVector & );//重载+=算符,向量加上向量 CVector operator+(const double α)const;//重载+运算符,向量加上实数alpna CVector& operator+=(const double α);//重载+=算符,向量加上实数alpha BOOL operator==(const CVector &)const;//重载==运算符 BOOL operator!=(const CVector &)const;//重载!=运算符 CMatrix //构造函数 CMatrix(); virtual ~CMatrix(); CMatrix(const CMatrix&);//拷贝构造函数 CMatrix(const size_t& n);//产生n阶单位阵 CMatrix(const size_t& nrow, const size_t& ncol);// CMatrix(const size_t& nrow, const size_t& ncol,const CVector& xdata);//产生nrow行,ncol列矩阵数据由xdata初始化 CMatrix(const size_t& nrow, const size_t& ncol,const double*const pData); CMatrix(const size_t& nrow, const size_t& ncol,const float* const pData); CMatrix(const size_t& nrow, const size_t& ncol,const int* const pData); //公开的成员函数 double At(const size_t& xr,const size_t& xc) const;//这个只能作为右值 CMatrix Trans()const;//A.T()返回矩阵A的转置副本 CVector diag()const;//矩阵上三角化后的对角向量//以此求矩阵的秩,矩阵的行列式等 double det()const;//求矩阵行列式 size_t rank()const;//矩阵的秩 CMatrix Inv()const;//求逆矩阵 inline BOOL IsNullMatrix()const{ return (BOOL)(m_nRowlen==0 || m_nCollen == 0);};//是否是空矩阵 BOOL IsSingularMatrix()const;//是否是奇异矩阵//即行列式为0 友函数 //科学计数法输出//想看较精确的数据的时候 friend void void PrintOut(const CMatrix& M,const size_t& nprecision = 6,std::ostream& os = std::cout); //产生的随机方阵,一般会是非异阵,供测试用 friend CMatrix randMatrix(const size_t &uSize;,int MAX);//随机产生n阶的方阵 //--------------------------重载部分-Overloaded Part---------------------------------- CMatrix& operator=(const CMatrix &);//重载=赋值运算符 double& operator()(size_t xr,size_t xc);//重载()运算符,A(i,j)即矩阵A的i行j列的元素, friend std::ostream & operator<<(std::ostream & ,const CMatrix &);//重载<<,可用cout输出矩阵 friend std::ostream & operator<<(std::ostream & ,const CVector&);//重载<<,可用cout输出向量 friend std::istream & operator>>(std::istream & CMatrix &);//重载>>,可用cin输入矩阵 CMatrix operator*(const double α)const;//重载*运算符,矩阵乘以实数alpha CVector operator*(const CVector &)const;//重载*运算符,矩阵乘以向量 CMatrix operator*(const CMatrix &)const;//重载*运算符,矩阵相乘 CMatrix& operator*=(const CMatrix &);//重载*=运算符 CMatrix operator^(const int α)const;//重载^幂运算符,A^alpha,alpha可以为负整数 CMatrix operator+(const CMatrix &)const;//重载+运算符,矩阵相加 CMatrix& operator+=(const CMatrix &);//重载+=运算符 CMatrix operator-(const CMatrix &)const;//重载- CMatrix& operator-=(const CMatrix &);//重载-=运算符 BOOL operator==(const CMatrix &)const;//重载==运算符,判断矩阵是否相等 BOOL operator!=(const CMatrix &)const;//重载!=运算符,判断矩阵是否不相等 CVector operator/(const CVector &)const;//重载/除运算符,向量左除矩阵,求Ax=b的x向量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZZWWWFFF_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值