机器学习中的线性回归

本文讲解了线性回归的核心概念,如何使用API建立模型,以及用正规方程和梯度下降求解方法。通过波士顿房价预测实例展示了模型评估指标。
摘要由CSDN通过智能技术生成

线性回归

概念

利用 回归方程(函数) 对 一个或多个自变量(特征值)和因变量(目标值)之间 关系进行建模的一种分析方式。

分类     

一元线性回归:y = wx +b 目标值只与一个因变量有关系

多元线性回归: y= w_1x_1+ w_2x_2 + w_3x_3 + …  + b 目标值只与多个因变量有关系

线性回归的API

# 创建线性回归对象
estimator = LinearRegression()
# 使用数据训练线性回归模型
estimator.fit(x,y)
# 利用训练好的模型 做预测
estimator.predict([[176]]) # 利用训练好的线性方程, 把特征值带进去, 计算目标值

训练好的线性回归模型对象有两个重要的属性

estimator.intercept_  # 截距  x = 0 y 的取值
estimator.coef_ # 回归系数 (线性方程的斜率)

线性回归求解的基本思路

线性回归 最终的目的是为了得到一个线性方程, 要来表示特征和目标之间的关系, 这一类模型目的是为了得到一个数学公式, 这种问题的解决有固定的套路

        确定假设函数 如果线性回归 y = KX +b 认为特征和目标之间满足线性关系

        确定损失函数 如果是回归问题一般使用均方误差

      对损失函数求解, 找到损失函数的极小值, 所对应的系数, 数学关系就确定下来, 模型也就搞定了

      对于线性回归来说, 就是要找到是损失最小的那一组 K 和 b        

      求解损失函数的极小值 就是优化方法

损失函数最小化方式

正规方程

线性回归最小而成损失函数            

J(w) =  ‖Xw−y‖_2^2 取值最小     

其解为: w = (X^TX)^−1 X^Ty

梯度下降

顾名思义:沿着梯度下降的方向求解极小值

举个例子:坡度最陡下山法,梯度下降过程就和下山场景类似 可微分的损失函数,代表着一座山 寻找的函数的最小值,也就是山底

公式: 循环迭代求当前点的梯度,更新当前的权重参数\

α: 学习率(步长)  不能太大, 也不能太小. 机器学习中:0.001 ~ 0.01

梯度是上升最快的方向, 我们需要是下降最快的方向, 所以需要加负号

梯度下降几种算法

全梯度下降

  • 使用全部样本进行计算, 当样本量较大的时候, 计算的速度可能比较慢

  • 想优化计算的速度, 可以考虑使用下面几种梯度下降算法

随机梯度下降

        每一轮随机挑选一个样本

小批量梯度下降

        每一轮随机挑选一小批样本

随机平均梯度下降

        每一轮随机挑选一个样本 , 会把这个样本记录下来

        下一轮再挑选一个样本, 计算两个样本梯度的平均值

线性回归模型评估

均方误差 Mean Squared Error MSE

平均绝对误差 Mean Absolute Error MAE

均方根误差 Root Mean Squared Error (RMSE)

指标使用

        MSE 均方误差, 是模型误差的平方, 不能反应真是的误差情况

        MAE / RMSE 基本可以反应真实的平均误差

        MAE / RMSE

                 一般情况下 对同一个模型, 同一份测试数据计算上面两个指标, RMSE > MAE

                RMSE 会对预测误差较大的点比较敏感

                可以综合两个指标来看最终模型的结果

波斯顿房价预测案例

加载数据

import pandas as pd
boston = pd.read_csv('/root/code/波士顿房价xy.csv')
y = boston['target']
x = boston.drop('target',axis=1) # 从数据中去掉 target这一列, 剩下的都是特征值 axis = 1 删除的数据指定的是列名

正规方程

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression # 正规方程
from sklearn.metrics import mean_squared_error # 均方误差
from sklearn.metrics import mean_absolute_error # 绝对平均误差
# 训练集测试集划分  test_size 默认值 0.25
X_train, X_test, y_train, y_test = train_test_split(x,y,random_state=22)
# 特征工程 标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 模型训练  正规方程
estimator = LinearRegression()
estimator.fit(X_train_scaled,y_train)
y_train_pred = estimator.predict(X_train_scaled)
y_test_pred = estimator.predict(X_test_scaled)
# 模型评估
print('训练集,mse',mean_squared_error(y_train_pred, y_train))
print('测试集,mse',mean_squared_error(y_test_pred, y_test))

print('训练集,mae',mean_absolute_error(y_train_pred, y_train))
print('测试集,mae',mean_absolute_error(y_test_pred, y_test))

梯度下降

from sklearn.linear_model import SGDRegressor #随机梯度下降
# 训练集测试集划分
X_train, X_test, y_train, y_test = train_test_split(x,y,random_state=22)
# 特征工程 标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# 模型训练  随机梯度下降
estimator = SGDRegressor()
estimator.fit(X_train_scaled,y_train)
y_train_pred = estimator.predict(X_train_scaled)
y_test_pred = estimator.predict(X_test_scaled)
# 模型评估
print('训练集,mse',mean_squared_error(y_train_pred, y_train))
print('测试集,mse',mean_squared_error(y_test_pred, y_test))

print('训练集,mae',mean_absolute_error(y_train_pred, y_train))
print('测试集,mae',mean_absolute_error(y_test_pred, y_test))

  • 31
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值