Python数据分析-房价预测机器学习

一、研究背景

房地产市场作为经济活动的关键领域之一,对于经济的发展和社会的稳定起着至关重要的作用。在当今全球化和信息化的背景下,房地产市场的波动和房价的变化不仅受到国内因素的影响,还受到全球经济环境和国际政治形势等外部因素的影响。因此,准确预测房价成为了政府、企业和个人都极为关注的重要问题。

二、研究意义

本研究旨在利用机器学习模型对房价进行预测,探索不同模型在房价预测任务上的性能差异,并通过优化最佳模型提高预测准确性。具体来说,本研究的意义体现在以下几个方面:为房价预测提供新方法。传统的房价预测方法受限于模型复杂度和特征提取能力,而机器学习模型能够更好地利用大规模数据,挖掘潜在的规律和趋势,为房价预测提供了新的方法和思路。提高决策的准确性和可靠性。。。。

三、研究方案

本研究将借助机器学习技术,利用大量的房屋数据和相关特征,建立起一个有效的房价预测模型。通过对比不同机器学习模型的性能以及对最佳模型的进一步优化,旨在提高房价预测的准确性和可靠性,为相关利益方提供更加有效的决策支持,推动房地产市场的健康发展和经济的持续稳定。。。

四、国内外研究现状

从国内研究来看,随着我国经济快速发展和城市化的不断推进,我国房地产市场日新月异,中国的房地产市场一直快速增长,价格预测已经成为人们和决策者的一个重要问题。崔慧莹主要是通过改进极端随机森林模型对大连市二手房屋价格进行预测,本文的创新点为提出一种基于卡方先验的混合特征选择算法的极端随机森林(GSR-ERF)模型,提出基于Hyperopt超参数优化方法来对GSR-ERF模型进行参数寻优。本文的研究工作主要包括以下几个方面:首先,本文的数据集使用python语言爬取房产超市2022年大连市二手房屋数据,将爬取的数据进行数据预处理、数据清洗等工作,对数据清洗后的二手房屋数据进行缺失值填补、标准化处理,最后对二手房屋数据进行分析描述。其次,本文提出一种基于先验卡方原理的混合特征选择算法的极端随机森林模型(GSR-ERF模型),该算法分别得出基于遗传算法、模拟退火算法、交叉验证递归消除法的最优特征子集,并通过先验测试集分别得到这三种模型在先验测试集上的卡方分数。随后通过这三种模型的卡方占比结合其对应的最优特征子集对其进行排序得到最终的最优特征子集,最终通过得到的最优特征子集训练极端随机森林模型[1]。

五、实证分析

数据和代码

报告代码数据

本文的数据是爬取的昆明市的房价网站的数据,爬取完为文本数据,所以还需要对原始数据进行预处理,最终数据处理完成图如下:

data = pd.read_csv('data (2).csv',encoding='GBK')

其中特征具体细节如下表:

解释

类型

房屋的卧室数量(个)

连续值

房屋的客厅数量(个)

连续值

房屋面积(平方米)

连续值

房屋朝向

离散值,1=东;2=南;3=西;4=北;5=东南;6=东北;7=西北;8=西南

房屋装修情况

离散值,0=其他;1=毛坯;2=简装;3=精装

建筑结构

离散值,0=其他;1=板楼;2=塔楼;3=板塔结合;4=平房

房屋所在楼层位置

离散值,0=低楼层;1=中楼层;2=高楼层

关注度(人次)

连续值

房屋发布时长

连续值

附近是否有地铁

离散值,0=否;1=是

是否可以VR看房

离散值,0=否;1=是

每平方米价格(元)

连续值

其中特征为11个,“每平方米价格(元)”为响应变量。整体数据为2992条。接下来对数据进行描述性统计分析:

# Performing descriptive statistics on the dataset
descriptive_stats = data.describe()

# Display the descriptive statistics
descriptive_stats

房屋卧室数量

房屋客厅数量

房屋面积

房屋朝向

房屋装修情况

建筑结构

房屋所在楼层位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值