数仓理论 —— 用户画像

1 用户画像简介

用户画像,即用户信息标签化。通过用户各个维度的信息,描述用户。
用户画像建模,即给用户“打标签”。

标签类型,可分为三类:

  • 统计类:用户的基本属性。如性别等维度,活跃天数等。
  • 规则类:在统计类标签的基础上,加规则,进一步限制。如“近30天交易次数>=2”的用户才算“消费活跃”。
  • 机器学习挖掘类:没有准确的数值,通过算法预测而来的信息。例如通过用户的行为习惯判断用户的性别。

2 用户画像实例

2.1 画像表结构设计

表结构设计的重点:存储哪些信息、如何存储(数据分区)、如何应用(如何抽取标签)。

依据不同业务场景,有两种方案:每日全量数据、每日增量数据。

每日全量数据:例如全量用户数据表。优点:便于查询。缺点:不便于查询更细粒度的用户行为。命名:表名加后缀“_all”。
每日增量数据:例如当日用户行为表。 可视为ODS层的用户行为画像。命名加后缀“_append”。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值