计算声学·物理基础篇1

计算声学

@rz_wen

第一部分·物理基础

流体力学

符号说明

c i j k i , j , k = 1 , 2 , 3 c_{ijk} \qquad i,j,k=1,2,3 cijki,j,k=1,2,3

c i j k X j Y k = X × Y c_{ijk}X_j Y_k = X \times Y cijkXjYk=X×Y

逆序数为奇数个为-1,偶数为+1,其余为0; c 231 c_{231} c231 2>1,3>1 所以逆序数为2

Reynolds输运定理

d [ ∭ V ( t ) [ B ( x ⃗ , t ) d v ] / d t = ∭ V ( t ) ∂ B ∂ t d v + ∬ ∂ V ( t ) B u ⃗ d S d [ \iiint_{V(t)}[B ( \vec x , t ) d v ] / d t = \iiint_{V(t)} \frac{\partial B}{\partial t} dv + \iint_{\partial V(t)} B \vec{u} dS d[V(t)[B(x ,t)dv]/dt=V(t)tBdv+V(t)Bu dS

d [ ∭ V ( t ) [ B ( x ⃗ , t ) d v ] / d t = ∭ V ( t ) ∂ B ∂ t + ∇ ⋅ ( B u ⃗ ) d v d [ \iiint_{V(t)}[B ( \vec x , t ) d v ] / d t = \iiint _ { V ( t ) } \frac {\partial B}{\partial t}+ \nabla \cdot ( B \vec u ) dv d[V(t)[B(x ,t)dv]/dt=V(t)tB+(Bu )dv

Reynolds输运定理实际上就是三维Leibniz积分法则在流体力学中的应用,右端第一项是本地变化率,第二项是边界上的输入变化率

质量守恒

将流场中的物理量 B B B换成密度 ρ \rho ρ,任意一个流体微元在运动的过程中,其质量都不会发生改变,对于任意体积V都满足 d [ ∫ ∫ ∫ V ( t ) [ B ( x ⃗ , t ) d v ] / d t = 0 d [ \int \int \int_{V(t)}[B ( \vec x , t ) d v ] / d t = 0 d[∫∫V(t)[B(x ,t)dv]/dt=0.可得:
∂ ρ ∂ t + ∇ ⋅ ( ρ u ⃗ ) = 0 \frac{\partial \rho}{\partial t}+\nabla \cdot (\rho \vec u)=0 tρ+(ρu )=0

d ρ d t + ρ ∇ ⋅ u ⃗ = 0 \frac{d \rho}{dt}+\rho \nabla \cdot \vec u =0 dtdρ+ρu =0

动量守恒

体积 V ( t ) V(t) V(t)中的流体,其动量单位时间的变化应当等于外界动量的输入,而外力包含体积力 f ⃗ \vec f f (单位体积收到的力)和应力两部分。

d d t ∭ V ( t ) ρ u ⃗ d v = ∭ V ( t ) f ⃗ ( x ⃗ , t ) d v + ∬ ∂ V ( t ) σ d S ⃗ \frac{d}{dt} \iiint_{V(t)} \rho \vec u dv = \iiint _{V(t)} \vec f(\vec x,t)dv+\iint_{\partial V(t)} \sigma d \vec S dtdV(t)ρu dv=V(t)f (x ,t)dv+V(t)σdS

由高斯定理可得:

∬ ∂ V ( t ) σ d S = ∭ V ( t ) ∇ ⋅ σ d v \iint_{\partial V(t)} \sigma d S = \iiint_{V(t)} \nabla \cdot \sigma dv V(t)σdS=V(t)σdv

由Reynolds输运定理可得:

d d t ∭ V ( t ) ρ u ⃗ d v = ∭ V ( t ) f ⃗ + ∇ ⋅ σ d v \frac{d}{dt} \iiint_{V(t)} \rho \vec u dv = \iiint_{V(t)} \vec f + \nabla\cdot \sigma dv dtdV(t)ρu dv=V(t)f +σdv


ρ [ ∂ u ⃗ ∂ t + ( u ⃗ ⋅ ∇ ) u ⃗ ] = ∇ ⋅ σ + f ⃗ \rho [\frac{\partial \vec u}{\partial t} + (\vec u \cdot \nabla)\vec u ]= \nabla \cdot \sigma + \vec f ρ[tu +(u )u ]=σ+f

d u ⃗ d t = ∂ u ⃗ ∂ t + ( u ⃗ ⋅ ∇ ) u ⃗ \frac{d \vec u}{dt} = \frac{\partial \vec u}{\partial t}+(\vec u \cdot \nabla)\vec u dtdu =tu +(u )u 可得另一种Cauchy方程:
ρ d u ⃗ d t = ∇ ⋅ σ + f ⃗ \rho\frac{d \vec u}{d t} = \nabla \cdot \sigma + \vec f ρdtdu =σ+f

速度散度的物理意义实际上就是体积变化率,对于不可压缩流体或固体,其体积变化率为0,所以 ∇ ⋅ u ⃗ = 0 \nabla \cdot \vec u=0 u =0,所以固体Cauchy方程
ρ ∂ u ⃗ ∂ t = ∇ ⋅ σ + f ⃗ \rho \frac{\partial \vec u}{\partial t} = \nabla\cdot \sigma + \vec f ρtu =σ+f

能量守恒

d ( E k + E i ) d t = P w − Q \frac{d(E_k+Ei)}{dt}=P_w-Q dtd(Ek+Ei)=PwQ
其中Q定义为流出的热量,带入各量的表达式, e e e 是单位质量蕴含的能量
d [ ∭ V ( t ) ( ρ u i u i / 2 + ρ e ) d v ] d t = ∬ ∂ V ( t ) T i u i d s + ∭ V ( t ) f i u i d v − ∬ ∂ V ( t ) q i n i d s \frac{d[\iiint_{V(t)} (\rho u_i u_i/2+\rho e)dv]}{dt}=\iint_{\partial V(t) }T_i u_i ds+\iiint_{V(t)} f_i u_i dv - \iint_{\partial V(t)} q_i n_i ds dtd[V(t)(ρuiui/2+ρe)dv]=V(t)Tiuids+V(t)fiuidvV(t)qinids
d [ ∭ V ( t ) ( ρ u i u i / 2 + ρ e ) d v ] d t = ∭ V ( t ) [ ( T i j u i ) , j + f i u i − q i , j ] d v \frac{d[\iiint_{V(t)} (\rho u_i u_i/2+\rho e)dv]}{dt}=\iiint_{V(t)}[(T_{ij}u_i)_{,j}+ f_i u_i -q_{i,j}]dv dtd[V(t)(ρuiui/2+ρe)dv]=V(t)[(Tijui),j+fiuiqi,j]dv
∭ V ( t ) [ ρ d ( u i u i / 2 + e ) / d t ] d v = ∭ V ( t ) [ ( T i j u i ) , j + f i u i − q i , j ] d v \iiint_{V(t)}[\rho d(u_i u_i/2+e)/dt] dv=\iiint_{V(t)}[(T_{ij}u_i)_{,j}+ f_i u_i -q_{i,j}]dv V(t)[ρd(uiui/2+e)/dt]dv=V(t)[(Tijui),j+fiuiqi,j]dv
移项并去除积分号
ρ d ( u i u i / 2 + e ) / d t − [ ( T i j u i ) , j − f i u i + q i , j ] = 0 \rho d(u_i u_i/2+e)/dt-[(T_{ij}u_i)_{,j}- f_i u_i +q_{i,j}]=0 ρd(uiui/2+e)/dt[(Tijui),jfiui+qi,j]=0
( ρ d u i d t − T i j , j − f i ) u i + ρ e ˙ − T i j u i , j + q i , j = 0 (\rho \frac{du_i}{dt}-T_{ij,j}-f_i)u_i+\rho \dot e -T_{ij}u_{i,j}+q_{i,j}=0 (ρdtduiTij,jfi)ui+ρe˙Tijui,j+qi,j=0
已知 ρ d u i d t − T i j , j − f i = 0 \rho \frac{du_i}{dt}-T_{ij,j}-f_i=0 ρdtduiTij,jfi=0,即得
ρ e ˙ − T i j u i , j + q i , j = 0 \rho \dot e -T_{ij}u_{i,j}+q_{i,j}=0 ρe˙Tijui,j+qi,j=0

应力应变

当小体元发生形变是收到周围相邻部分力地作用,小体院单位表面上的力称为应力,固体中能产生法向应力和切应力,表面一般收到9个应力分量 T i j T_{ij} Tij i = j i=j i=j时代表法向应力, i ≠ j i \neq j i=j时代表切应力,且具有对称性

T i j = T j i T_{ij}=T_{ji} Tij=Tji

确定应力特性需要6个分量

柯西应变可以分为主应变(normal strain)与剪切应变(角应变,shear strain)两种。一维定义 e = lim ⁡ L → 0 Δ L L e=\lim_{L\to0}\frac{\Delta L}{L} e=limL0LΔL,在三维中用柯西应变张量可方便地表示

虎克定律

σ = E e \boldsymbol{\sigma}=Ee σ=Ee,其中 σ = F   /   A , {\boldsymbol{\sigma}}=F\:/\:A, σ=F/A,

广义虎克定律可以描述应力与应变的本构关系,一般情况下,应力与应变具有线性关系,每个分量均对应变有贡献,即每个应力均是6个应变分量的线性函数。
T i j = C i j k l ε k l T_{ij}=C_{ijkl} \varepsilon_{kl} Tij=Cijklεkl

[ T 11 T 22 T 33 T 32 T 13 T 13 T 21 ] = [ C 11 C 12 C 13 C 14 C 15 C 16 C 21 C 22 C 23 C 24 C 25 C 26 C 31 C 32 C 33 C 34 C 35 C 36 C 41 C 42 C 43 C 44 C 45 C 46 C 51 C 52 C 53 C 54 C 55 C 56 C 61 C 62 C 63 C 64 C 65 C 66 ] [ ε 11 ε 22 ε 33 ε 32 ε 13 ε 21 ] \begin{bmatrix}T_{11}\\ T_{22}\\ T_{33}\\ T_{32}\\ T_{13}\\ T_{13}\\ T_{21}\end{bmatrix} = \begin{bmatrix}C_{11}&C_{12}&C_{13}&C_{14}&C_{15}&C_{16}\\ C_{21}&C_{22}&C_{23}&C_{24}&C_{25}&C_{26}\\ C_{31}&C_{32}&C_{33}&C_{34}&C_{35}&C_{36}\\ C_{41}&C_{42}&C_{43}&C_{44}&C_{45}&C_{46}\\ C_{51}&C_{52}&C_{53}&C_{54}&C_{55}&C_{56}\\ C_{61}&C_{62}&C_{63}&C_{64}&C_{65}&C_{66} \end{bmatrix} \begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ \varepsilon_{33}\\ \varepsilon_{32}\\ \varepsilon_{13}\\ \varepsilon_{21}\end{bmatrix} T11T22T33T32T13T13T21 = C11C21C31C41C51C61C12C22C32C42C52C62C13C23C33C43C53C63C14C24C34C44C54C64C15C25C35C45C55C65C16C26C36C46C56C66 ε11ε22ε33ε32ε13ε21

其中 C i j C_{ij} Cij为弹性系数,固体具有 36 36 36个弹性系数,具有对称性 C i j = C j i C_{ij}=C_{ji} Cij=Cji,可减少到 21 21 21个,各向同性固体可减少到 2 2 2

[ T 11 T 22 T 33 T 32 T 13 T 13 T 21 ] = [ c 11 c 11 − 2 c 44 c 11 − 2 c 44 0 0 0 c 11 − 2 c 44 c 11 c 11 − 2 c 44 0 0 0 c 11 − 2 c 44 c 11 − 2 c 44 c 11 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 44 0 0 0 0 0 0 c 44 ] [ ε 11 ε 22 ε 33 2 ε 32 2 ε 13 2 ε 21 ] \begin{bmatrix}T_{11}\\ T_{22}\\ T_{33}\\ T_{32}\\ T_{13}\\ T_{13}\\ T_{21}\end{bmatrix}=\begin{bmatrix}{{c_{11}}}&{{c_{11}-2c_{44}}}&{{c_{11}-2c_{44}}}&{{0}}&{{0}}&{{0}}\\ {{c_{11}-2c_{44}}}&{{c_{11}}}&{{c_{11}-2c_{44}}}&{{0}}&{{0}}&{{0}}\\ {{c_{11}-2c_{44}}}&{{c_{11}-2c_{44}}}&{{c_{11}}}&{{0}}&{{0}}&{{0}}\\ {{0}}&{{0}}&{{0}}&{{c_{44}}}&{{0}}&{{0}}\\ {{0}}&{{0}}&{{0}}&{{0}}&{{c_{44}}}&{{0}}\\ {{0}}&{{0}}&{{0}}&{{0}}&{{0}}&{{c_{44}}}\end{bmatrix} \begin{bmatrix}\varepsilon_{11}\\ \varepsilon_{22}\\ \varepsilon_{33}\\ 2\varepsilon_{32}\\ 2\varepsilon_{13}\\ 2\varepsilon_{21}\end{bmatrix} T11T22T33T32T13T13T21 = c11c112c44c112c44000c112c44c11c112c44000c112c44c112c44c11000000c44000000c44000000c44 ε11ε22ε332ε322ε132ε21

其中
c 44 = c 55 = c 66 , c 11 = c 22 = c 33 c_{44}=c_{55}=c_{66},c_{11}=c_{22}=c_{33} c44=c55=c66,c11=c22=c33
c i j = c 11 − 2 c 44 , ( i ≠ j ) c_{ij}=c_{11}-2c_{44},(i \neq j) cij=c112c44,(i=j)

波动方程

ρ ( ∂ u i   /   ∂ t ) − f ⃗ i + P i = 0 \rho(\partial u_{_i}\:/\:\partial t)-\vec{f}_{_i}+P_{_i}=0 ρ(ui/t)f i+Pi=0
忽略体力
ρ ( ∂ u ⃗   /   ∂ t ) + ∇ P = 0 \rho(\partial\vec{u}\:/\:\partial t)+\nabla P=0 ρ(u /t)+P=0
u ⃗ = ∂ d ⃗ ∂ t \vec{u}=\frac{\partial \vec{d}}{\partial t} u =td ,方程两端同时取 ∇ \nabla

ρ ∂ 2 ( ∇ ⋅ d ⃗   )   /   ∂ 2 t + ∇ ⋅ ∇ P = 0 \rho\partial^{2}(\nabla\cdot\vec{d}\:)\:/\:\partial^{2}t+\nabla\cdot\nabla P=0 ρ2(d )/2t+P=0
ρ ∂ 2 ( θ   )   /   ∂ 2 t + ∇ ⋅ ∇ P = 0 \rho\partial^{2}(\theta \:)\:/\:\partial^{2}t+\nabla\cdot\nabla P=0 ρ2(θ)/2t+P=0
其中 θ \theta θ是体积张量

流体中波动方程
∂ 2 P   /   ∂ 2 t = c 2 ∇ 2 P \partial^2P\:/\:\partial^2t=c^2\nabla^2P 2P/2t=c22P

其中声速 c = k ρ c=\sqrt{\frac{k}{\rho}} c=ρk ,体积模量 k = − P θ k=-\frac{P}{\theta} k=θP

固体中直接用表面力表示
ρ ∂ v i   /   ∂ t   −   f i ( x ⃗ , t )   −   T i j , j = 0 \rho\partial v_{i}\:/\:\partial t\:-\:f_{i}(\vec{x},t)\:-\:T_{i j,j}=0 ρvi/tfi(x ,t)Tij,j=0
其中 T ˙ i j = C i j k l   ν k , l \dot{T}_{ij}=C_{ijkl}\:\nu_{k,l} T˙ij=Cijklνk,l

分析力学

约束

对非自由体的某些位移起限制作用的条件称为约束

通常只能知道约束力的作用,但无法知道详细的约束力,通过约束力关联的变量之间不独立。为了解决这个问题,我们引入广义坐标。

完整约束的广义坐标等于其自由度数目,非完整约系统的有些速度项无法消去,所以其广义坐标数一般大于系统的自由度的数目

q ˙ \dot q q˙ q {q} q 是不同的两个变量

广义速度

对广义坐标求全导数,下式中 q j q_{j} qj用了求和约定
r ˙ i = d r i   /   d t = ∂ r i   / ∂ t + ( ∂ r i   / ∂ q j ) q ˙ j \dot{r}_i=dr_i\:/\ dt=\partial r_i\:/\partial t+(\partial r_i\:/\partial q_j)\dot{q}_j r˙i=dri/ dt=ri/t+(ri/qj)q˙j
可以写成矩阵形式,A可以称为 雅可比矩阵(Jacobian matrix),是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式
r ˙ = A q ˙ + B \dot{\mathbf r}=A\dot{\mathbf q}+\mathbf B r˙=Aq˙+B

B = ( ∂ r 1   /   ∂ t ∂ r 2   /   ∂ t ∂ r 3   /   ∂ t . . . . . . . . . . ∂ r 3 N   /   ∂ t ) ,   A = [ ∂ r 1 / ∂ q 1 ,   ∂ r 1 / ∂ q 2 , … , … , ∂ r 1 / ∂ q M ∂ r 2 / ∂ q 1 ,   ∂ r 2 / ∂ q 3 , … … , ∂ r 2 / ∂ q M ∂ r 3 / ∂ q 1 ,   ∂ r 3 / ∂ q 2 , … … , ∂ r 3 / ∂ q M … … … … … … … … … … … … ∂ r 3 N / ∂ q 1 , ∂ r 3 N / ∂ q 2 , … … ∂ r 3 N / ∂ q M ] \mathbf{B}={\left(\begin{array}{l}{\partial r_{1}\:/\ \partial t}\\ {\partial r_{2}\ /\ \partial t}\\ {\partial r_{3}\ /\ \partial t}\\ {..........}\\ {\partial r_{3N}\ /\ \partial t}\end{array}\right)},\: \mathbf{A}={\left[\begin{array}{l l}{\partial r_{1}/\partial q_{1},} \: {\partial r_{1}/\partial q_{2},\ldots,\ldots,\partial r_{1}/\partial q_{M}}\\ {\partial r_{2}/\partial q_{1},} \: {\partial r_{2}/\partial q_{3},\ldots\ldots,\partial r_{2}/\partial q_{M}}\\ {\partial r_{3}/\partial q_{1},} \: {\partial r_{3}/\partial q_{2},\ldots\ldots,\partial r_{3}/\partial q_{M}}\\{\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots}\\ {\partial r_{3N}/\partial q_{1},\partial r_{3N}/\partial q_{2},\ldots\ldots\partial r_{3N}/\partial q_{M}}\end{array}\right]} B= r1/ tr2 / tr3 / t..........r3N / t ,A= r1/q1,r1/q2,,,r1/qMr2/q1,r2/q3,……,r2/qMr3/q1,r3/q2,……,r3/qM………………………………r3N/q1,r3N/q2,……r3N/qM

达朗伯原理

虚位移跟时间相互独立, δ r α = d r α = ( ∂ r α / ∂ q i ) δ q i \delta r_{\alpha}=d r_{\alpha}=\left(\partial r_{\alpha}/\partial q_{i}\right)\delta q_{i} δrα=drα=(rα/qi)δqi

虚功 δ W = F α δ r α = F α ( ∂ r α / ∂ q i ) δ q i \delta W=F_{\alpha}\delta r_{\alpha}=F_{\alpha}(\partial r_{\alpha}/\partial q_{_{i}})\delta q_{i} δW=Fαδrα=Fα(rα/qi)δqi

广义力 Q = α ( ∂ r α / ∂ q i ) Q=_{\alpha}(\partial r_{\alpha}/\partial q_{_{i}}) Q=α(rα/qi)

广义动量 p i = ∂ T   /   ∂ q ˙ i = ∂ L   /   ∂ q ˙ i p_{i}=\partial T\:/\:\partial\dot{q}_{i}=\partial L\:/\:\partial\dot{q}_{i} pi=T/q˙i=L/q˙i

当一个有约束的力学系统处于力学平衡时,考虑某个时刻 t 系统坐标的一个微小的、与运动方程和约束条件都兼容的虚位移,由于每个质点都处于力学平衡即 F i = 0 \mathbf{F}_i=0 Fi=0,可知
∑ i F i ⋅ δ x i = 0   \sum_i\mathbf F_i\cdot\delta\mathbf x_i=0\: iFiδxi=0
F i = F i ( a ) + F i ( c ) \mathbf{F}_{i}=\mathbf{F}_{i}^{(a)}+\mathbf{F}_{i}^{(c)} Fi=Fi(a)+Fi(c)
F i ( a ) \mathbf{F}_{i}^{(a)} Fi(a)为主动力, F i ( c ) \mathbf{F}_{i}^{(c)} Fi(c)为约束力,许多完整约束的约束力的虚功之和为零,可得到虚功原理所有主动力的虚功之和为0
∑ i F i ( a ) ⋅ δ x i = 0 \sum_i\mathbf{F}_i^{(a)}\cdot\delta\mathbf{x}_i=0 iFi(a)δxi=0
当力学系统不平衡时,可以将 F i = 0 \mathbf{F}_{i}=0 Fi=0替换成牛顿方程 F i − p ˙ i = 0 \mathbf{F}_{i}-\dot{\mathbf{p}}_{i}=0 Fip˙i=0可得到达朗伯原理(d’Alembert’s principle):
∑ i ( F i ( a ) − p ˙ i ) ⋅ δ x i = 0 \sum_i(\mathbf{F}_i^{(a)}-\dot{\mathbf{p}}_i)\cdot\delta\mathbf{x}_i=0 i(Fi(a)p˙i)δxi=0
F i ( a ) ⋅ δ x i = F i ( a ) ⋅ ∂ x i ∂ q i δ q j = Q j δ q j \mathbf F_i^{(a)}\cdot\delta\mathbf x_i=\mathbf F_i^{(a)}\cdot\dfrac{\partial\mathbf x_i}{\partial q_i}\delta q_j=Q_j\delta q_j Fi(a)δxi=Fi(a)qixiδqj=Qjδqj
由全导数易知 ∂ x ˙ i ∂ q ˙ j = ∂ x i ∂ q j \dfrac{\partial\mathbf{\dot x}_i}{\partial\dot{q}_j}=\dfrac{\partial\mathbf{x}_i}{\partial q_j} q˙jx˙i=qjxi
p ˙ i ⋅ δ x i = m i x ¨ i ⋅ ∂ x i ∂ q j δ q j = [ d d t ( m i x ˙ i ⋅ ∂ x i ∂ q j ) − m i x ˙ i ⋅ d d t ( ∂ x i ∂ q j ) ] δ q j \dot{\mathbf{p}}_i\cdot\delta\mathbf{x}_i=m_i\ddot{\mathbf{x}}_i\cdot\dfrac{\partial\mathbf{x}_i}{\partial q_j}\delta q_j = [\dfrac{d}{dt}\left(m_i\dot{\mathbf{x}}_i\cdot\dfrac{\partial{\mathbf{x}}_i}{\partial q_j}\right)-m_i\dot{\mathbf{x}}_i\cdot\dfrac{d}{dt}\left(\dfrac{\partial{\mathbf{x}}_i}{\partial q_j}\right)]\delta q_j p˙iδxi=mix¨iqjxiδqj=[dtd(mix˙iqjxi)mix˙idtd(qjxi)]δqj
[ d d t ∂ T ∂ q ˙ j − ∂ T ∂ q j − Q j ] δ q j = 0 \left[\dfrac{d}{dt}\dfrac{\partial T}{\partial\dot{q}_j}-\dfrac{\partial T}{\partial q_j}-Q_j\right]\delta q_j=0 [dtdq˙jTqjTQj]δqj=0

对于完整约束, q j q_{j} qj都是独立的变量因此可得一种形式的欧拉-拉格朗日方程
d d t ∂ T ∂ q ˙ j − ∂ T ∂ q j = Q j \dfrac{d}{dt}\dfrac{\partial T}{\partial\dot{q}_j}-\dfrac{\partial T}{\partial q_j}=Q_j dtdq˙jTqjT=Qj

如果主动力是由不依赖于速度的势能 V \boldsymbol{V} V给出
Q j = − ∂ V ∂ q j Q_j=-\dfrac{\partial V}{\partial q_j} Qj=qjV
定义拉格朗日量为系统的动能与势能之差 L = T − V \boldsymbol{L}=T-V L=TV欧拉-拉格朗日方程也可以写为
d d t ∂ L ∂ q ˙ j − ∂ L ∂ q j = 0 \dfrac{d}{dt}\dfrac{\partial L}{\partial\dot{q}_j}-\dfrac{\partial L}{\partial q_j}=0 dtdq˙jLqjL=0

哈密顿原理

哈密顿作用量 为对拉格朗日函数对时间积分,为洛伦兹标量;原理可叙述为完整、保守系统在具有相同时间间隔,从起始到终了位置的一切可能运动和真实运动相比较,真实运动的哈密顿作用量为极值
S = ∫ t 1 t 2 L ( q , q ˙ , t ) d t S=\int_{t_1}^{t_2}L(q,\dot{q},t)dt S=t1t2L(q,q˙,t)dt

δ S = δ ∫ t 1 t 2 L   ( q , q ˙ , t ) d t = 0 \delta S=\delta\int_{t_1}^{t_2}L\ (q,\dot{q},t)\mathrm{d}t=0 δS=δt1t2L (q,q˙,t)dt=0

可通过变分法推导出拉格朗日方程

δ S = ∫ t 1 t 2 L ( q c + δ q , q c ˙ + δ q ˙ , t ) d t − ∫ t 1 t 2 L ( q c , q c ˙ , t ) d t = ∫ t 1 t 2 d t ( ∂ L ∂ q ˙ i δ q ˙ i + ∂ L ∂ q i δ q i ) = 0 \delta S=\int_{t_1}^{t_2}L(q_c+\delta q,\dot{q_c}+\delta\dot{q},t)dt-\int_{t_1}^{t_2}L(q_c,\dot{q_c},t)dt=\int_{t_1}^{t_2}dt\left(\dfrac{\partial L}{\partial\dot{q}_i}\delta\dot{q}_i+\dfrac{\partial L}{\partial q_i}\delta q_i\right)=0 δS=t1t2L(qc+δq,qc˙+δq˙,t)dtt1t2L(qc,qc˙,t)dt=t1t2dt(q˙iLδq˙i+qiLδqi)=0
∂ L ∂ q ˙ i δ q ˙ i = d d t ( ∂ L ∂ q ˙ i δ q i ) − [ d d t ( ∂ L ∂ q ˙ i ) ] δ q i \dfrac{\partial L}{\partial\dot{q}_i}\delta\dot{q}_i=\dfrac{d}{dt}\left(\dfrac{\partial L}{\partial\dot{q}_i}\delta q_i\right)-\left[\dfrac{d}{dt}\left(\dfrac{\partial L}{\partial\dot{q}_i}\right)\right]\delta q_i q˙iLδq˙i=dtd(q˙iLδqi)[dtd(q˙iL)]δqi
δ S = ∂ L ∂ q ˙ i δ q i ∣ t 1 t 2 + ∫ t 1 t 2 d t ( ∂ L ∂ q i − d d t ∂ L ∂ q ˙ i ) δ q i = 0 \delta S=\left.\dfrac{\partial L}{\partial\dot{q}_i}\delta q_i\right|_{t_1}^{t_2}+\int_{t_1}^{t_2}dt\left(\dfrac{\partial L}{\partial q_i}-\dfrac{d}{dt}\dfrac{\partial L}{\partial\dot{q}_i}\right)\delta q_i=0 δS=q˙iLδqi t1t2+t1t2dt(qiLdtdq˙iL)δqi=0
由于变分 δ q \delta q δq为无穷小量且为时间的任意函数,所以 δ q ( t 1 ) = δ q ( t 2 ) = 0 \delta q(t_{1})=\delta q(t_{2})=0 δq(t1)=δq(t2)=0,第一项为 0,第二项系数也必为 0,得真实运动满足的欧拉-拉格朗日方程 (f个自由度的完整约束系统)
  ∂ L ∂ q i − d d t ∂ L ∂ q i ˙ = 0   , i = 1 , 2 , ⋯   , f   \:\dfrac{\partial L}{\partial q_i}-\dfrac{d}{dt}\dfrac{\partial L}{\partial\dot{q_i}}=0\:,\quad i=1,2,\cdots,f\: qiLdtdqi˙L=0,i=1,2,,f

哈密顿正则方程

广义动量 p i = ∂ L ∂ q ˙ i p_i=\dfrac{\partial L}{\partial\dot{q}_i} pi=q˙iL

广义力 d p i d t = ∂ L ∂ q i \dfrac{dp_i}{dt}=\dfrac{\partial L}{\partial q_i} dtdpi=qiL

哈密顿量 是拉格朗日函数的勒让德变换,以广义坐标和共轭的广义动量为变量的函数,在数值上等于系统的能量
H ( p , q , t ) = p i q ˙ i − L H(p,q,t)=p_i\dot{q}_i-L H(p,q,t)=piq˙iL
d H = q ˙ i d p i − p ˙ i d q i − ∂ L ∂ t d t dH=\dot{q}_i dp_i-\dot{p}_i dq_i-\dfrac{\partial L}{\partial t}dt dH=q˙idpip˙idqitLdt
由哈密顿量的微分可知
q ˙ i = ∂ H ∂ p i   ,      p ˙ i = − ∂ H ∂ q i \dot{q}_i=\dfrac{\partial H}{\partial p_i}\:,\:\:\:\:\dot{p}_i=-\dfrac{\partial H}{\partial q_i} q˙i=piH,p˙i=qiH
若系统的哈密顿量不显含时间,则同样可得
d H d t = ∂ H ∂ t = − ∂ L ∂ t \dfrac{dH}{dt}=\dfrac{\partial H}{\partial t}=-\dfrac{\partial L}{\partial t} dtdH=tH=tL
这一组方程为哈密顿正则方程

哈密顿-雅可比方程

L = d S d t = ∂ S ∂ t + ∂ S ∂ q i q i ˙ = ∂ S ∂ t + p i q i ˙ L=\dfrac{dS}{dt}=\dfrac{\partial S}{\partial t}+\dfrac{\partial S}{\partial q_i}\dot{q_i}=\dfrac{\partial S}{\partial t}+p_i\dot{q_i} L=dtdS=tS+qiSqi˙=tS+piqi˙
∂ S ∂ t + p i q i ˙ − L = 0 \dfrac{\partial S}{\partial t}+p_i\dot{q_i}-L=0 tS+piqi˙L=0
根据哈密顿量的定义可得
∂ S ∂ t + H = 0 \dfrac{\partial S}{\partial t}+H=0 tS+H=0

计算声学 物理基础篇2

参考:
分析力学 刘川
数学物理方法 王德新
计算声学讲义 王秀明
(王秀明老师的学生不要照搬哦)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值