计算声学 物理基础篇2

计算声学

@rz_wen

连续介质中的波动方程

连续介质拉格朗日方程

势能密度 U ρ = T i j q i , j / 2 = C i j k l q i , j q k , l / 2 U_{\rho}=T_{ij}q_{i,j}/2=C_{ijkl} q_{i,j} q_{k,l}/2 Uρ=Tijqi,j/2=Cijklqi,jqk,l/2
根据虎克定理: T i j = C i j k l ε k l = C i j k l q k , l T_{i j}=C_{i j k l}\varepsilon_{k l}=C_{i j k l}q_{k,l} Tij=Cijklεkl=Cijklqk,l

拉格朗日密度 L ρ = L ρ ( q i , q ˙ i , q i , j , t ) = ρ q ˙ i q ˙ i / 2 − C i j k l q i , j q k , l / 2 L_\rho=L_\rho(q_i,\dot{q}_i,q_{i,j},t)=\rho\dot{q}_i\dot{q}_i/2-C_{ijkl}q_{i,j}q_{k,l}/2 Lρ=Lρ(qi,q˙i,qi,j,t)=ρq˙iq˙i/2Cijklqi,jqk,l/2

取拉格朗日密度的变分
δ L ρ ( q , q ˙ i , q i , j , t ) = ( ∂ L ρ / ∂ q i ) δ q i + ( ∂ L ρ / ∂ q ˙ i ) δ q ˙ i + ( ∂ L ρ / ∂ q i , j ) δ q i , j + ( ∂ L ρ / ∂ t ) δ t \delta L_{\rho}(q,\dot{q}_{i},q_{i,j},t)=(\partial L_{\rho}/\partial q_{i})\delta q_{i}+(\partial L_{\rho}/\partial\dot{q}_{i})\delta\dot{q}_{i}+(\partial L_{\rho}/\partial q_{i,j})\delta q_{i,j}+(\partial L_{\rho}/\partial t)\delta t δLρ(q,q˙i,qi,j,t)=(Lρ/qi)δqi+(Lρ/q˙i)δq˙i+(Lρ/qi,j)δqi,j+(Lρ/t)δt
其中 ( ∂ L ρ / ∂ t ) δ t = 0 (\partial L_{\rho}/\partial t)\delta t=0 (Lρ/t)δt=0

由于时间均匀性,拉格朗日函数不显含时间,即 ∂ L ∂ t = 0 \frac{\partial L}{\partial t}=0 tL=0;广义坐标,广义速度和时间是独立的变量,对于相同的 ( q , q ˙ ) (q,\dot{q}) (q,q˙)时间 t t t的变化不会引起拉格朗日函数的改变, L ( q , q ˙ , t 1 ) = L ( q , q ˙ , t 2 ) = L ( q , q ˙ ) L(q,\dot{q},t_1)=L(q,\dot{q},t_2)=L(q,\dot{q}) L(q,q˙,t1)=L(q,q˙,t2)=L(q,q˙)

满足哈密顿原理
∫ t 1 t 2 d t ∭ Ω δ L ρ d ν = 0 \int_{t_1}^{t_2}dt\iiint_\Omega\delta L_\rho d\nu=0 t1t2dtΩδLρdν=0
δ S = ∫ t i t i d t ∭ Ω [ ( ∂ L ρ / ∂ q i ) δ q i + ( ∂ L ρ / ∂ q ˙ i ) δ q ˙ i + ( ∂ L ρ / ∂ q i , j ) δ q i , j ] d = 0 \delta S=\int_{t_{i}}^{t_{i}}d t \iiint_ {\Omega}[(\partial L_{\rho}/\partial q_{i})\delta q_{i}+(\partial L_{\rho}/\partial\dot{q}_{i})\delta\dot{q}_{i}+(\partial L_{\rho}/\partial q_{i,j})\delta q_{i,j}]d =0 δS=titidtΩ[(Lρ/qi)δqi+(Lρ/q˙i)δq˙i+(Lρ/qi,j)δqi,j]d=0

第二项为:
∫ t 0 t 1 ∭ Ω ( ∂ L ρ / ∂ q ˙ i ) δ q ˙ i ] d v d t = ∭ Ω { ∫ t 0 t 1 d [ ( ∂ L ρ / ∂ q ˙ i ) δ q i ] / d t } d t − ∫ t 0 t 1 [ δ q i d ( ∂ L ρ / ∂ q ˙ i ) / d t ] d t } d v \int_{t_{0}}^{t_{1}}\iiint_{\Omega}(\partial L_{\rho}/\partial\dot{q}_{i})\delta\dot{q}_{i}]d v d t=\iiint_{\Omega}\{\int_{t_{0}}^{t_{1}}d[(\partial L_{\rho}/\partial\dot{q}_{i})\delta q_{i}]/d t\}d t-\int_{t_{0}}^{t_{1}}[\delta q_{i}d(\partial L_{\rho}/\partial\dot{q}_{i})/d t]d t\}d v t0t1Ω(Lρ/q˙i)δq˙i]dvdt=Ω{t0t1d[(Lρ/q˙i)δqi]/dt}dtt0t1[δqid(Lρ/q˙i)/dt]dt}dv

= − ∭ Ω ∫ t 0 t 1 { [ ( ∂ L ρ / ∂ q ˙ i ) / d t ] δ q i } d t d v =-\iiint_\Omega\int_{t_0}^{t_1}\{[(\partial L_\rho/\partial\dot q_i)/dt]\delta q_i\}dt dv =Ωt0t1{[(Lρ/q˙i)/dt]δqi}dtdv
因为广义坐标与时间无关, δ q i ∣ t 0 t 1 = 0 \left.\delta q_{i}\right|_{t_{0}}^{t_{1}}=0 δqit0t1=0
第三项为:
∫ t 0 t 1 ∭ Ω [ ( ∂ L ρ / ∂ q i , j ) δ q i , j ] d v d t = ∫ t 0 t 1 ∭ Ω [ ( ∂ L ρ / ∂ q i , j ) δ q i ] , j − ( ∂ L ρ / ∂ q i , j ) , j δ q i ] d v d t \int_{t_{0}}^{t_{1}}\iiint_{\Omega}[(\partial L_{\rho}/\partial q_{i,j})\delta q_{i,j}]d v d t =\int_{t_0}^{t_1}\iiint_\Omega[(\partial L_\rho/\partial q_{i,j})\delta q_i]_{,j}-(\partial L_\rho/\partial q_{i,j})_{,j}\delta q_i]dv d t t0t1Ω[(Lρ/qi,j)δqi,j]dvdt=t0t1Ω[(Lρ/qi,j)δqi],j(Lρ/qi,j),jδqi]dvdt

= ∫ t 0 t 1 ∭ Ω [ − ( ∂ L ρ / ∂ q i , j ) , j δ q i ] d v d t − ∫ t 0 t 1 { ∬ ∂ Ω ( T i j l j ) δ q i d s } d t =\int_{t_{0}}^{t_{1}}\iiint_{\Omega}[-(\partial L_{\rho}/\partial q_{i,j})_{,j}\delta q_{i}]d v d t-\int_{t_{0}}^{t_{1}}\{\iint_{\partial\Omega}(T_{i j}l_{j})\delta q_{i}d s\}d t =t0t1Ω[(Lρ/qi,j),jδqi]dvdtt0t1{Ω(Tijlj)δqids}dt
其中 ∂ L ρ / ∂ q i , j = ∂ ( K ρ − U ρ ) / ∂ q i , j = − ∂ U ρ / ∂ q i , j = − T i j \partial L_{\rho}/\partial q_{i,j}=\partial(K_{\rho}-U_{\rho})/\partial q_{i,j}=-\partial U_{\rho}/\partial q_{i,j}=-T_{i j} Lρ/qi,j=(KρUρ)/qi,j=Uρ/qi,j=Tij

相加得到总体的方程:
∫ t 0 t 1 d t ∭ Ω [ ∂ L ρ / ∂ q i − ( ∂ L ρ / ∂ q i , j ) , j − d ( ∂ L ρ / ∂ q ˙ i ) / d t ] δ q i d v − ∫ t 0 t 1 d t ∬ ∂ Ω T i δ q i d s = 0 \int_{t_0}^{t_1} dt\iiint_\Omega [\partial L_\rho/\partial q_i-(\partial L_\rho/\partial q_{i,j})_,j-d(\partial L_\rho/\partial\dot{q}_i)/dt]\delta q_i dv-\int_{t_0}^{t_1} dt\iint_{\partial \Omega} T_i\delta q_i ds=0 t0t1dtΩ[Lρ/qi(Lρ/qi,j),jd(Lρ/q˙i)/dt]δqidvt0t1dtΩTiδqids=0
与外界无能量交换时, T i = 0 T_{i}=0 Ti=0
∫ t 0 t 1 d t ∭ Ω [ ∂ L ρ / ∂ q i − ( ∂ L ρ / ∂ q i , j ) , j − d ( ∂ L ρ / ∂ q ˙ i ) / d t ] δ q i d v = 0 \int_{t_0}^{t_1} dt\iiint_\Omega [\partial L_\rho/\partial q_i-(\partial L_\rho/\partial q_{i,j})_,j-d(\partial L_\rho/\partial\dot{q}_i)/dt]\delta q_i dv=0 t0t1dtΩ[Lρ/qi(Lρ/qi,j),jd(Lρ/q˙i)/dt]δqidv=0
因为体积选择和时间选择均为任意,所以积分恒为0等价于被积项为零
[ ∂ L ρ / ∂ q i − ( ∂ L ρ / ∂ q i , j ) , j − d ( ∂ L ρ / ∂ q ˙ i ) / d t ] δ q i = 0 [\partial L_\rho/\partial q_i-(\partial L_\rho/\partial q_{i,j})_{,j}-d(\partial L_\rho/\partial\dot q_i)/dt]\delta q_i=0 [Lρ/qi(Lρ/qi,j),jd(Lρ/q˙i)/dt]δqi=0

d ( ∂ L ρ / ∂ q ˙ i ) / d t + ( ∂ L ρ / ∂ q i , j ) , j − ∂ L ρ / ∂ q i = 0 d(\partial L_\rho/\partial\dot{q}_i)/dt+\left(\partial L_\rho/\partial q_{i,j}\right)_{,j}-\partial L_\rho/\partial q_i=0 d(Lρ/q˙i)/dt+(Lρ/qi,j),jLρ/qi=0

连续介质中的哈密顿方程

哈密顿量密度 H ρ = q ˙ i π i − L ρ H_{\rho}=\dot{q}_{i}\pi_{i}-L_{\rho} Hρ=q˙iπiLρ
广义动量密度 π i = ∂ L ρ / ∂ q ˙ i \pi_i=\partial L_{\rho}/\partial\dot{q}_{i} πi=Lρ/q˙i, p i = ∭ Ω π i d p_i=\iiint_\Omega\pi_i d pi=Ωπid
H ˙ = d H / d t = d d t ∭ Ω ( q ˙ i π i − L ρ ) d ν \dot{H}=d H/d t=\frac{d}{dt}\iiint_{\Omega}(\dot{q}_{i}\pi_{i}-L_{\rho})d\nu H˙=dH/dt=dtdΩ(q˙iπiLρ)dν
由求导法则可知
H ˙ = ∭ Ω [ ( ∂ H ρ / ∂ π i ) π ˙ i + ( ∂ H ρ / ∂ q i ) q ˙ i + ( ∂ H ρ / ∂ q i , j ) q ˙ i , j + ( ∂ H ρ / ∂ t ) ] d v \dot{H}=\iiint_{\Omega}[(\partial H_{\rho}/\partial\pi_{i})\dot{\pi}_{i}+(\partial H_{\rho}/\partial q_{i})\dot{q}_{i}+(\partial H_{\rho}/\partial q_{i,j})\dot{q}_{i,j}+(\partial H_{\rho}/\partial t)]d v H˙=Ω[(Hρ/πi)π˙i+(Hρ/qi)q˙i+(Hρ/qi,j)q˙i,j+(Hρ/t)]dv
由定义式可得
H ˙ = ∭ Ω [ q ˙ i π ˙ i − ( ∂ L ρ / ∂ q i ) q ˙ i − ( ∂ L ρ / ∂ q i , j ) q ˙ i , j − ∂ L ρ / ∂ t ] d v \dot{H}=\iiint_{\Omega}[\dot{q}_{i}\dot{\pi}_{i}-(\partial L_{\rho}/\partial q_{i})\dot{q}_{i}-(\partial L_{\rho}/\partial q_{i,j})\dot{q}_{i,j}-\partial L_{\rho}/\partial t]d v H˙=Ω[q˙iπ˙i(Lρ/qi)q˙i(Lρ/qi,j)q˙i,jLρ/t]dv
两个式子应该逐项相等,可得
{ q ˙ i = ∂ H ρ / ∂ π i , ∂ L ρ / ∂ q i = − ∂ H ρ / ∂ q i , ∂ L ρ / ∂ q i , j = − ∂ H ρ / ∂ q i , j , ∂ I ρ / ∂ t = − ∂ H ρ / ∂ t . \begin{cases}{\dot{q}_{i}=\partial H_{\rho}/\partial\pi_{i},}\\ {\partial L_{\rho}/\partial q_{i}=-\partial H_{\rho}/\partial q_{i},}\\ {\partial L_{\rho}/\partial q_{i,j}=-\partial H_{\rho}/\partial q_{i,j},}\\ {\partial I_{\rho}/\partial t=-\partial H_{\rho}/\partial t.}\\ \end{cases} q˙i=Hρ/πi,Lρ/qi=Hρ/qi,Lρ/qi,j=Hρ/qi,j,Iρ/t=Hρ/t.
根据哈密顿原理
δ S = ∫ t 1 t 2 ∭ Ω [ π i ∂ q ˙ i + q ˙ i ∂ π i − ( ∂ H ρ / c ^ q i ) δ q i − ( ∂ H ρ / ∂ π i ) δ ˙ π i − ( ∂ H ρ / ∂ q i , j ) δ q i , j ] d ν = 0 \delta S=\int_{t_1}^{t_2}\iiint_\Omega[\pi_i\partial\dot{q}_i+\dot{q}_i\partial\pi_i-(\partial H_\rho/\hat{c}q_i)\delta q_i-(\partial H_\rho/\partial\pi_i)\dot{\delta}\pi_i-(\partial H_\rho/\partial q_{i,j})\delta q_{i,j}]d\nu=0 δS=t1t2Ω[πiq˙i+q˙iπi(Hρ/c^qi)δqi(Hρ/πi)δ˙πi(Hρ/qi,j)δqi,j]dν=0
推导和消去方法和推导拉格朗日方程类似,不再赘述
δ S = ∫ t 1 t 1 d t { ∭ Ω [ ( q ˙ i − ∂ H ρ / ∂ π i ) ∂ π i − ( π ˙ i + ∂ H ρ / ∂ q i − ( ∂ H ρ / ∂ q i , j ) , j ) ∂ q i ] d v } = 0 \delta S=\int_{t_{1}}^{t_{1}}d t\{\iiint_{\Omega}[(\dot{q}_{i}-\partial H_{\rho}/\partial\pi_{i})\partial\pi_{i}-\Big(\dot{\pi}_{i}+\partial H_{\rho}/\partial q_{i}-(\partial H_{\rho}/\partial q_{i,j})_{,j}\Big)\partial q_{i}]d v\}=0 δS=t1t1dt{Ω[(q˙iHρ/πi)πi(π˙i+Hρ/qi(Hρ/qi,j),j)qi]dv}=0
因为 δ q i \delta q_{i} δqi δ π i \delta\pi_i δπi为独立任意的变量,方程为0等价于两者的系数均为0,即
{ q ˙ i = ∂ H ρ / ∂ π i , π ˙ i = − ∂ H ρ / ∂ q i + ( ∂ H ρ / ∂ q i , j ) , j \left\{\begin{array}{l}{{\dot{q}_{i}=\partial H_{\rho}/\partial\pi_{i},}}\\ {{\dot{\pi}_{i}=-\partial H_{\rho}/\partial q_{i}+(\partial H_{\rho}/\partial q_{i,j})_{,j}}}\end{array}\right. {q˙i=Hρ/πi,π˙i=Hρ/qi+(Hρ/qi,j),j

哈密顿方程和拉格朗日的关系

{ q ˙ i = ∂ H ρ / ∂ π i , π ˙ i = − ∂ H ρ / ∂ q i + ( ∂ H ρ / ∂ q i , j ) , j \left\{\begin{array}{l}{{\dot{q}_{i}=\partial H_{\rho}/\partial\pi_{i},}}\\ {{\dot{\pi}_{i}=-\partial H_{\rho}/\partial q_{i}+(\partial H_{\rho}/\partial q_{i,j})_{,j}}}\end{array}\right. {q˙i=Hρ/πi,π˙i=Hρ/qi+(Hρ/qi,j),j
π i = ∂ L ρ / ∂ q ˙ i \pi_i=\partial L_{\rho}/\partial\dot{q}_{i} πi=Lρ/q˙i
d ( ∂ L ρ / ∂ q ˙ i ) d t = − ∂ H ρ / ∂ q i + ( ∂ H ρ / ∂ q i , j ) , j d(\partial L_{\rho}/\partial\dot{q}_{i})d t=-\partial H_{\rho}/\partial q_{i}+\left(\partial H_{\rho}/\partial q_{i,j}\right)_{,j} d(Lρ/q˙i)dt=Hρ/qi+(Hρ/qi,j),j
{ q ˙ i = ∂ H ρ / ∂ π i , ∂ L ρ / ∂ q i = − ∂ H ρ / ∂ q i , ∂ L ρ / ∂ q i , j = − ∂ H ρ / ∂ q i , j , ∂ I ρ / ∂ t = − ∂ H ρ / ∂ t . \begin{cases}{\dot{q}_{i}=\partial H_{\rho}/\partial\pi_{i},}\\ {\partial L_{\rho}/\partial q_{i}=-\partial H_{\rho}/\partial q_{i},}\\ {\partial L_{\rho}/\partial q_{i,j}=-\partial H_{\rho}/\partial q_{i,j},}\\ {\partial I_{\rho}/\partial t=-\partial H_{\rho}/\partial t.}\\ \end{cases} q˙i=Hρ/πi,Lρ/qi=Hρ/qi,Lρ/qi,j=Hρ/qi,j,Iρ/t=Hρ/t.
代入即可得拉格朗日方程
d ( ∂ L ρ / ∂ q ˙ i ) d t − ∂ L ρ / ∂ q i + ( ∂ L ρ / ∂ q i , j ) , j = 0 d(\partial L_{\rho}/\partial\dot{q}_{i})d t-\partial L_{\rho}/\partial q_{i}+\left(\partial L_{\rho}/\partial q_{i,j}\right)_{,j}=0 d(Lρ/q˙i)dtLρ/qi+(Lρ/qi,j),j=0

波动方程

保守系统的自由边界条件:边界处与外界无能量交换,即应力为0

T i = T j l j = ( ∂ U ρ / ∂ q i , j ) l j = 0 T_i=T_jl_j=(\partial U_\rho/\partial q_{i,j})l_j=0 Ti=Tjlj=(Uρ/qi,j)lj=0

已知拉格朗日方程

d ( ∂ L ρ / ∂ q ˙ i ) / d t + ( ∂ L ρ / ∂ q i , j ) , j − ∂ L ρ / ∂ q i = 0 d(\partial L_{\rho}/\partial\dot{q}_{i})/d t+\left(\partial L_{\rho}/\partial q_{i,j}\right)_{,j}-\partial L_{\rho}/\partial q_{i}=0 d(Lρ/q˙i)/dt+(Lρ/qi,j),jLρ/qi=0

L ρ = L ρ ( q i , q ˙ i , q i , j , t ) = ρ q ˙ i q ˙ i / 2 − C i j k l q i , j q k , l / 2 L_\rho=L_\rho(q_i,\dot{q}_i,q_{i,j},t)=\rho\dot{q}_i\dot{q}_i/2-C_{ijkl}q_{i,j}q_{k,l}/2 Lρ=Lρ(qi,q˙i,qi,j,t)=ρq˙iq˙i/2Cijklqi,jqk,l/2

其中
∂ L ρ / ∂ q ˙ i = ∂ ( ρ q ˙ i q ˙ i / 2 − C i j k l q i , j q k , l ) / ∂ q ˙ i = ρ q ˙ i \partial L_\rho/\partial\dot{q}_i=\partial(\rho\dot{q}_i\dot{q}_i/2-C_{ijkl}q_{i,j}q_{k,l})/\partial\dot{q}_i=\rho\dot{q}_i Lρ/q˙i=(ρq˙iq˙i/2Cijklqi,jqk,l)/q˙i=ρq˙i

d ( ∂ L ρ / ∂ q ˙ i ) d t = ρ q ¨ i d(\partial L_\rho/\partial\dot{q}_i)dt=\rho\ddot{q}_i d(Lρ/q˙i)dt=ρq¨i

( ∂ L ρ / ∂ q i , j ) , j = − [ ∂ ( C i j k q i , j q k , j / 2 ) / ∂ q i , j ] , j = − ( C i j k q k , j ) , j = − T i j , j (\partial L_{\rho}/\partial q_{i,j})_{,j}=-[\partial(C_{ijk}q_{i,j}q_{k,j}/2)/\partial q_{i,j}]_{,j}=-(C_{ijk}q_{k,j})_{,j}=-T_{ij,j} (Lρ/qi,j),j=[(Cijkqi,jqk,j/2)/qi,j],j=(Cijkqk,j),j=Tij,j

∂ L ρ / ∂ q i = 0 \partial L_\rho/\partial q_i=0 Lρ/qi=0

逐项带入可得

ρ q ¨ i − T i j , j = 0 \rho\ddot{q}_i-T_{ij,j}=0 ρq¨iTij,j=0

若存在体力 δ W e = f i δ q i \delta W_e=f_{i}\delta q_{i} δWe=fiδqi

∫ t 1 t 2 d t [ ∭ Ω δ L ρ d ν + ∭ Ω δ W e d ν ] = 0 \int_{t_1}^{t_2}dt[\iiint_\Omega\delta L_\rho d\nu+\iiint_\Omega\delta W_e d\nu]=0 t1t2dt[ΩδLρdν+ΩδWedν]=0

ρ q ¨ i − T i j , j − f i = 0 \rho\ddot{q}_i-T_{ij,j}-f_i=0 ρq¨iTij,jfi=0

试举一维弦振动实例:

L ρ = ρ u ˙ u ˙ / 2 − E u x u x / 2 L_\rho=\rho \dot u \dot u/2-E u_x u_x/2 Lρ=ρu˙u˙/2Euxux/2

∫ t t 2 d t ∫ x x 2 δ ( ρ u ˙ u ˙ / 2 − E u x u x / 2 ) d x = 0 \int_t^{t_2}dt\int_x^{x_2}\delta(\rho \dot u \dot u/2-E u_x u_x/2)dx=0 tt2dtxx2δ(ρu˙u˙/2Euxux/2)dx=0

因为空间上只有 x x x一个维度

∫ x 1 x 2 d x ∫ t 1 t 2 ( ρ u ˙ δ u ˙ − E u x δ u x ) d t = 0 \int_{x_1}^{x_2}dx\int_{t_1}^{t_2}(\rho\dot{u}\delta\dot{u}-E u_x\delta u_x)dt=0 x1x2dxt1t2(ρu˙δu˙Euxδux)dt=0

∫ x 1 x 2 d x { ρ u ˙ δ u ∣ t 1 t 2 − ∫ t 1 t 2 ( ρ u ˙ δ u + E u x δ u x ) d t } = 0 \int_{x_1}^{x_2}d x \{\rho\dot{u}\delta u\big|_{t_1}^{t_2}-\int_{t_1}^{t_2}(\rho\dot{u}\delta u+E u_x\delta u_x)dt\}=0 x1x2dx{ρu˙δu t1t2t1t2(ρu˙δu+Euxδux)dt}=0

广义坐标时间任意,第一项为0

∫ x 1 x 2 d x ∫ t 1 t 2 ( ρ i u δ u + E u x δ u x ) d t = 0 \int_{x_1}^{x_2}dx\int_{t_1}^{t_2}(\rho i u\delta u+E u_x\delta u_x)dt=0 x1x2dxt1t2(ρiuδu+Euxδux)dt=0

由微分知识可知 f ′ ( x ) d x = d ( f ( x ) ) f'(x) dx=d(f(x)) f(x)dx=d(f(x)),且 x x x只有一维

∫ x 1 x 1 [ E u , x ( δ u ) , x ] d x = ∫ x 1 x 1 [ E u x d ( δ u ) = E u x δ u ∣ x 1 x 2 − ∫ x 1 x 1 ( E u x ) , x δ u d x = − ∫ x 1 x 2 E u , x 1 δ u d x \int_{x_1}^{x_1}[E u_{,x}(\delta u)_{,x}]dx=\int_{x_1}^{x_1}[E u_x d(\delta u)=E u_x\delta u|_{x_1}^{x_2}-\int_{x_1}^{x_1}(E u_x)_{,x}\delta u dx=-\int_{x_1}^{x_2}E u_{,x_1}\delta u dx x1x1[Eu,x(δu),x]dx=x1x1[Euxd(δu)=Euxδux1x2x1x1(Eux),xδudx=x1x2Eu,x1δudx

∫ x 1 x 2 ∫ t 1 t 2 ( ρ u ¨ − E u x x ) δ u d x d t = 0 \int_{x_1}^{x_2}\int_{t_1}^{t_2}(\rho\ddot{u}-Eu_{xx})\delta u dx dt=0 x1x2t1t2(ρu¨Euxx)δudxdt=0
坐标为任取,所以系数必为0,类似地可得振动方程:
ρ u ˙ − E u x x = 0 \rho \dot u -E u_{xx}=0 ρu˙Euxx=0

u ¨ − a 2 u x x = 0 \ddot{u}-a^{2}u_{x x}=0 u¨a2uxx=0
其中 a = E / ρ a=\sqrt{E/\rho} a=E/ρ

分离变量法

分离变量

以上节导出的一维振动方程为例,求解方程

{ u t t − a 2 u x = 0 0 < x < l , t > 0 ( 1 ) u ∣ x = 0 = 0 u ∣ x = l = 0 ( 2 ) u ∣ t = 0 = ϕ ( x ) u l ∣ t = 0 = ψ ( x ) , 0 < x < l ( 3 ) \begin{cases} u_{tt}-a^2u_x=0\quad0 \text{<}x\text{<}l,t\text{>}0 \quad (1)\\u\left|_{x=0}\text{=}0\quad u\right|_{x=l}\text{=}0 \quad (2)\\u\left|_{t=0}\text{=}\phi(x)\quad u_l\right|_{t=0}\text{=}\psi(x),\quad0\text{<}x\text{<}l \quad (3)\end{cases} utta2ux=00<x<l,t>0(1)ux=0=0ux=l=0(2)ut=0=ϕ(x)ult=0=ψ(x),0<x<l(3)

定解问题:泛定方程(1) + 边界条件(2) + 初始条件(3)

u ( x , t ) = X T = X ( x ) T ( t ) u\left(x,t\right)=X T=X\left(x\right)T\left(t\right) u(x,t)=XT=X(x)T(t)

带入式(1)整理得:

T ′ ′ / ( c 2 T ) = X ′ ′ / X T^{\prime\prime}/(c^{2}T)=X^{\prime\prime}/X T′′/(c2T)=X′′/X

定义一个常数 λ \lambda λ,使得

T " / ( c 2 T ) = X " / X = − λ T"/\left(c^2T\right)=X"/X=-\lambda T"/(c2T)=X"/X=λ

{ X ′ ′ + λ X = 0 T ′ ′ + c 2 λ T = 0 \begin{cases}X''+\lambda X=0 \\ T''+c^2\lambda T=0\end{cases} {X′′+λX=0T′′+c2λT=0

带入边界条件

{ X ( 0 ) T ( t ) = 0 X ( l ) T ( t ) = 0 → { X ( 0 ) = 0 , X ( l ) = 0. \left\{\begin{matrix}{X(0)T(t)=0}\\ {X(l)T(t)=0}\\ \end{matrix}\right.\rightarrow\left\{\begin{matrix}{X(0)=0,}\\ {X(l)=0.}\\ \end{matrix}\right. {X(0)T(t)=0X(l)T(t)=0{X(0)=0,X(l)=0.

变量能分离的条件

当定义在区域D上的函数 f ( x ) f(x) f(x)对于D上所有 ( a , b ) (a,b) (a,b) ( x , y ) (x,y) (x,y)满足 f ( x , y ) = f ( a , y ) f ( x , b ) / f ( a , b ) f(x,y)=f(a,y)f(x,b)/f(a,b) f(x,y)=f(a,y)f(x,b)/f(a,b),则其可以写成 f ( x , y ) = u ( x ) v ( y ) f(x,y)=u(x)v(y) f(x,y)=u(x)v(y)

本征值问题

{ X ′ ′ + λ X = 0 X ( 0 ) = X ( l ) = 0 \begin{cases}X''+\lambda X=0\\ X(0)= X(l)=0\end{cases} {X′′+λX=0X(0)=X(l)=0

  1. λ = 0 \lambda = 0 λ=0,则 X ( x ) = C 1 x + C 2 X(x)=C_1 x+C_2 X(x)=C1x+C2
    带入 X ( 0 ) = X ( l ) = 0 X(0)=X(l)=0 X(0)=X(l)=0可得 X ( x ) = 0 X(x)=0 X(x)=0
  2. λ < 0 \lambda < 0 λ<0,则 X ( x ) = C 1 e x p ( − λ x ) + C 2 e x p ( − λ x ) X(x)=C_1 exp(\sqrt{-\lambda}x)+C_2 exp(\sqrt{-\lambda}x) X(x)=C1exp(λ x)+C2exp(λ x)
    带入 X ( 0 ) = X ( l ) = 0 X(0)=X(l)=0 X(0)=X(l)=0可得
    { C 1 + C 2 = 0 , C 1 exp ⁡ ( − λ l ) + C 2 exp ⁡ ( − − λ l ) = 0 \begin{cases}{C_{1}+C_{2}=0,}\\ {C_{1}\operatorname{exp}(\sqrt{-\lambda}l)+C_{2}\operatorname{exp}(-\sqrt{-\lambda}l)=0}\\ \end{cases} {C1+C2=0,C1exp(λ l)+C2exp(λ l)=0
    X ( x ) = 0 X(x)=0 X(x)=0
  3. λ > 0 \lambda > 0 λ>0,则 X ( x ) = C 1 exp ⁡ ( j λ x ) + C 2 exp ⁡ ( − j λ x ) X(x)=C_{1}\exp(j\sqrt{\lambda}x)+C_{2}\exp(-j\sqrt{\lambda}x) X(x)=C1exp(jλ x)+C2exp(jλ x)
    { C 1 + C 2 = 0 , C 1 [ cos ⁡ ( λ l ) + j sin ⁡ ( λ l ) ] + C 2 [ cos ⁡ ( λ l ) − j sin ⁡ ( λ l ) ] = 0. \begin{cases}C_1+C_2=0,\\ C_1[\cos(\sqrt{\lambda}l)+j\sin(\sqrt{\lambda}l)]+C_2[\cos(\sqrt{\lambda}l)-j\sin(\sqrt{\lambda}l)]=0.\end{cases} {C1+C2=0,C1[cos(λ l)+jsin(λ l)]+C2[cos(λ l)jsin(λ l)]=0.
    C 1 sin ⁡ ( λ l ) = 0 \quad C_1\sin(\sqrt{\lambda}l)=0 C1sin(λ l)=0
    可得
    λ n l = n π \sqrt{\lambda_n}l=n\pi λn l=
    λ n = ( n π l ) 2 , n = 1 , 2 , 3 , . . . \lambda_n=\left(\frac{n \pi}{l}\right)^2,n=1,2,3,... λn=(l)2,n=1,2,3,...
    所以得到:
    X n ( x ) = C n sin ⁡ ( n π x l ) X_{n}(x)=C_{n}\operatorname{sin}(\frac{n\pi x}{l}) Xn(x)=Cnsin(lx)

据此求解方程 T ′ ′ + λ c 2 T = 0 T^{\prime\prime}+\lambda c^{2}T=0 T′′+λc2T=0

T n = A ′ cos ⁡ ( n π c t / l ) + B ′ sin ⁡ ( n π c t / l ) T_{n}=A^{\prime}\operatorname{cos}(n\pi c t/l)+B^{\prime}\operatorname{sin}(n\pi c t/l) Tn=Acos(ct/l)+Bsin(ct/l)

u = X T = ∑ n = 1 + ∞ [ A n cos ⁡ ( n π c t / l ) + B n sin ⁡ ( n π c t / l ) ] sin ⁡ ( n π x / l ) u=XT=\sum_{n=1}^{+\infty}[A_{n}\cos(n\pi c t/l)+B_{n}\sin(n\pi c t/l)]\sin(n\pi x/l) u=XT=n=1+[Ancos(ct/l)+Bnsin(ct/l)]sin(x/l)

通过初始条件可进一步获得系数 A n A_n An, B n B_n Bn
u ( x , 0 ) = ∑ n = 1 ∞ A n sin ⁡ ( n π x / l ) = φ ( x ) u t ( x , 0 ) = ∑ n = 1 ∞ B n ( n π a / l ) sin ⁡ ( n π / l ) x = ψ ( x ) \begin{aligned}u(x,0)=\sum_{n=1}^\infty A_n\sin(n\pi x/l)=\varphi(x)\\ u_t(x,0)=\sum_{n=1}^\infty B_n(n\pi a/l)\sin(n\pi/l)x=\psi(x)\end{aligned} u(x,0)=n=1Ansin(x/l)=φ(x)ut(x,0)=n=1Bn(nπa/l)sin(/l)x=ψ(x)

三角函数的正交性
∫ − π π ( sin ⁡ n x ) ( sin ⁡ m x ) d x = 0 , n ≠ m , n , m = 0 , 1 , 2 , ⋯ \int_{-\pi}^{\pi}(\sin\mathrm{nx})(\sin\mathrm{mx})\mathrm{dx}=0,\qquad n\neq m,n,m=0,1,2,\cdots ππ(sinnx)(sinmx)dx=0,n=m,n,m=0,1,2,
∫ − π π cos ⁡ 2 n x d x = ∫ − π π sin ⁡ 2 n x d x = π \int_{-\pi}^\pi\cos^2nx\mathrm dx=\int_{-\pi}^\pi\sin^2nx\mathrm dx=\pi ππcos2nxdx=ππsin2nxdx=π

两边同乘三角函数并积分,只有 m = n m=n m=n时不为0

∑ n = 1 ∞ A n ∫ 0 l sin ⁡ ( n π x / l ) [ sin ⁡ ( m π x / l ) ] d x = ∫ 0 l φ ( x ) [ sin ⁡ ( m π x / l ) ] d x \sum\limits_{n=1}^\infty A_n\int_0^l\sin(n\pi x/l)[\sin(m\pi x/l)]dx=\int_0^l\varphi(x)[\sin(m\pi x/l)]dx n=1An0lsin(x/l)[sin(x/l)]dx=0lφ(x)[sin(x/l)]dx

A n ∫ 0 l sin ⁡ 2 ( m π x / l ) d x = ∫ 0 l φ ( x ) [ sin ⁡ ( m π x / l ) ] d x A_n\int_0^l\sin^2\left(m\pi x/l\right)dx=\int_0^l\varphi(x)[\sin(m\pi x/l)]dx An0lsin2(x/l)dx=0lφ(x)[sin(x/l)]dx

可以解得系数 A n A_n An
A n = ( 2 / l ) ∫ 0 l φ ( x ) sin ⁡ ( n π x / l ) d x A_{n}=(2/l)\int_{0}^{l}\varphi(x)\sin(n\pi x/l)d x An=(2/l)0lφ(x)sin(x/l)dx

同理可以解得 B n B_n Bn

B n = [ 2 / ( n π c ) ] ∫ 0 l ψ ( x ) sin ⁡ ( n π x / l ) d x B_{n}=[2/(n\pi c)]\int_{0}^{l}\psi(x)\sin(n\pi x/l)d x Bn=[2/(c)]0lψ(x)sin(x/l)dx

微分方程

概念

常微分方程: 形如 F ( d n y / d x n , d n − 1 y / d x n − 1 , . . . , d 2 y / d x 2 , d y / d x , y , x ) = 0 F(d^ny/dx^n,d^{n-1}y/dx^{n-1},...,d^2y/dx^2,dy/dx,y,x)=0 F(dny/dxn,dn1y/dxn1,...,d2y/dx2,dy/dx,y,x)=0 称为n阶常微分方程

偏微分方程: 微分方程里存在多个变量,对多个变量求偏导

线性: 上式中,如果F对未知函数y和它的各阶导数的全体而言是一次的,则称为线性常微分方程,否则称它为非线性常微分方程

其次常微分方程的一般解即为其通解,非齐次常微分方程的一般解为其通解加特解

L u = f , x ∈ [ a , b ] Lu=f,x\in[a,b] Lu=f,x[a,b]其中 L u = − ( 1 / w ) d [ p d u / d x ] / d x + q u L u=-(1/w)d\left[p d u/d x\right]/d x+q u Lu=(1/w)d[pdu/dx]/dx+qu

u = ∫ g ( x , ξ ) f ( ξ ) d ξ u=\int g(x,\xi)f(\xi)d\xi u=g(x,ξ)f(ξ)dξ

∫ L g ( x , ξ ) f ( ξ ) d ξ = f ( x ) \int Lg(x,\xi)f(\xi)d\xi=f(x) Lg(x,ξ)f(ξ)dξ=f(x)

根据 δ ( x ) \delta(x) δ(x)函数抽样性质又有:

∫ δ ( x − ξ ) f ( ξ ) d ξ = f ( x ) \int\delta(x-\xi)f(\xi)d\xi=f(x) δ(xξ)f(ξ)dξ=f(x)

L g ( x , ξ ) = δ ( x − ξ ) L g(x,\xi)=\delta(x-\xi) Lg(x,ξ)=δ(xξ)
格林函数可以理解为系统 L − 1 L^{-1} L1的冲击响应

在泛函分析中定义为向量空间上算子特征值的集合;当特征值是离散的,即为离散谱;特征值是连续的,即为连续谱;也有离散连续混合的,为混合谱

Sturm–Liouville本征值问题

声学中常用的赫姆霍兹方程,球贝塞尔方程等均为二阶线性常微分方程,可以证明任何二阶线性常微分方程均可以化为Sturm–Liouville方程,为分离变量法的理论基础

二阶线性齐次偏微分方程经分离变量后将得到二阶线性齐次常微分方程,其普遍形式为:

a ( x ) y ′ ′ ( x ) + b ( x ) y ′ ( x ) + c ( x ) y ( x ) + λ y ( x ) = 0 , a < x < b a(x)y''(x)+b(x)y'(x)+c(x)y(x)+\lambda y(x)=0,\qquad a<x<b a(x)y′′(x)+b(x)y(x)+c(x)y(x)+λy(x)=0,a<x<b

可化为S_L型方程

d d x [ k ( x ) d y ( x ) d x ] − Q ( x ) y ( x ) + λ ρ ( x ) y ( x ) = 0 , a < x < b \dfrac{\mathrm{d}}{\mathrm{d}x}\bigg[k(x)\frac{\mathrm{d}y(x)}{\mathrm{d}x}\bigg]-\mathrm{Q}(x)y(x)+\lambda\rho(x)y(x)=0,\qquad a<x<b dxd[k(x)dxdy(x)]Q(x)y(x)+λρ(x)y(x)=0,a<x<b

其中

k ( x ) = e ∫ a ( x ) d x Q ( x ) = = k ( x )   c ( x ) a ( x ) ρ ( x ) = k ( x ) a ( x ) \begin{array}{l}k(x)=\mathrm{e}^{\int_{a(x)}dx}\\\\ Q(x)==k(x)~\dfrac{c(x)}{a(x)}\\\\ \rho(x)=\dfrac{k(x)}{a(x)}\\\\ \end{array} k(x)=ea(x)dxQ(x)==k(x) a(x)c(x)ρ(x)=a(x)k(x)

S-L本征值问题,就是在一定的边界条件下,求S-L型方程的 λ 本征值及相应的非零解即本征函数

边界条件一般分为三类:齐次边界条件,周期性边界条件,自然边界条件

S-L本征值问题的基本性质: 存在定理;非负定理;正交性定理;完备性定理;

计算声学 物理基础篇1
参考:
分析力学 刘川
数学物理方法 王德新
计算声学讲义 王秀明
(王秀明老师的学生不要照搬哦)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值