消息传递 [构造题]

36 篇文章 0 订阅
6 篇文章 0 订阅

消 息 传 递 消息传递



正 解 部 分 \color{red}{正解部分}

首先分析题目, 得到两个性质,

  • u → v u \rightarrow v uv v → w v \rightarrow w vw 两条路径可以合成 u → w u \rightarrow w uw 一条路径, 答案不会更差 .
  • a → b a \rightarrow b ab, c → d c \rightarrow d cd 两条路径造成的效果 和 a → d a \rightarrow d ad, c → b c \rightarrow b cb 的效果一样, 如下图,



有了这两个性质, 就可以得出结论: 每个节点要么是出发节点, 要么是结束节点, 且节点间的配对情况对总流量没有影响 .

于是尝试以下构造方法 先构造出 每个节点父亲节点 连边以满足题意 的方案, 将 1 1 1 作为根, 从底向顶 处理,

儿子节点 的权值通过向 父亲节点 传递消息的方式消为 0 0 0, 因为数据保证有解, 所以消到 的权值会变为 0 0 0 .

在往上进行 “消元” 的过程中记录每个节点流入和流出的消息流量,
最后将每个节点分成两类, 一类是流出的节点, 另一类是流入的节点, 再将节点按编号 从小到大 排序, 按顺序两两配对即可得到最优解 .


实 现 部 分 \color{red}{实现部分}

#include<bits/stdc++.h>
#define reg register

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ flag = -1, c = getchar(); break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

const int maxn = 1000006;

int N;
int t1;
int t2;
int num0;
int w[maxn];
int in[maxn];
int out[maxn];
int head[maxn];
int Ans_1[maxn];
int Ans_2[maxn];

struct Edge{ int nxt, to; } edge[maxn << 1];

void Add(int from, int to){ edge[++ num0] = (Edge){ head[from], to }; head[from] = num0; }

void DFS(int k, int fa){
        for(reg int i = head[k]; i; i = edge[i].nxt){
                int to = edge[i].to;
                if(to == fa) continue ;
                DFS(to, k);
                if(!w[to]) continue ;
                int v = abs(w[to]);
                if((w[to] > 0) == (to > k)) out[k] += v, in[to] += v;
                else out[to] += v, in[k] += v; 
                w[k] -= w[to], w[to] = 0;
        }
}

int main(){
        N = read();
        for(reg int i = 1; i <= N; i ++) w[i] = read();
        for(reg int i = 1; i < N; i ++){ int u = read(), v = read(); Add(u, v), Add(v, u); }
        DFS(1, 0);
        for(reg int i = 1; i <= N; i ++)
                if(in[i] > out[i]){
                        int x = in[i] - out[i];
                        while(x --) Ans_2[++ t2] = i;
                }else if(in[i] < out[i]){
                        int x = out[i] - in[i];
                        while(x --) Ans_1[++ t1] = i;
                }
        printf("%d\n", t1);
        for(reg int i = 1; i <= t2; i ++) printf("%d %d\n", Ans_1[i], Ans_2[i]);
        return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值