分 则 能 成 分则能成 分则能成
最 初 想 法 \color{blue}{最初想法} 最初想法
发现大多数情况下将数字
n
n
n分作
n
/
2
−
1
n/2-1
n/2−1,
n
/
2
n/2
n/2, 或
n
/
2
+
1
n/2+1
n/2+1 结果最优,
然后最后一次分解直接分作
n
/
2
n/2
n/2 .
正 解 部 分 \color{red}{正解部分} 正解部分
最终 一定分成 K + 1 K+1 K+1 个数字, 设为 a 1 , a 2 , a 3 . . . a m a_1, a_2, a_3...a_m a1,a2,a3...am,
发现
a
i
a_i
ai 之间恰好每个之间都乘了一次 累加后得到答案 .
于是答案为 1 2 ∑ i = 1 m a i ∗ ( N − a i ) \frac{1}{2}\sum\limits_{i=1}^ma_i*(N-a_i) 21i=1∑mai∗(N−ai) , 可以证明当 a i a_i ai 最平均时答案最大 .
m = K + 1 m = K+1 m=K+1
实 现 部 分 \color{red}{实现部分} 实现部分
现将 N N N 分为 K + 1 K+1 K+1 份, 然后将 N % ( K + 1 ) N\%(K+1) N%(K+1) 平均分布到这 K + 1 K+1 K+1 份中 .
#include<bits/stdc++.h>
typedef long long ll;
ll N;
ll K;
int main(){
freopen("Split.in", "r", stdin);
freopen("Split.out", "w", stdout);
scanf("%lld%lld", &N, &K);
ll Ans = (K+1-N%(K+1)) * (N/(K+1)) * (N - N/(K+1));
Ans += (N%(K+1))*(N/(K+1)+1)*(N-N/(K+1)-1);
printf("%lld\n", Ans >> 1);
return 0;
}