线段树优化建图学习笔记

线段树优化建图能有效降低时空复杂度,适用于处理大规模节点的连边操作,如单源最短路问题。通过建立入树和出树,遵循特定规则连接节点,实现边数为O(MlogN)的高效图。本文详细介绍了建图的五个步骤,包括叶子节点连边、点到区间、区间到点的连边操作,并提及在实际题目中的应用案例。
摘要由CSDN通过智能技术生成


  • 线 段 树 优 化 建 图 的 作 用 线段树优化建图的作用 线

问 题 问题

N N N 个节点, 执行 M M M 次以下连边操作, 倩输出以 s s s 为起点的单源最短路:

  1. a → b a \rightarrow b ab
  2. a → [ l , r ] a \rightarrow [l, r] a[l,r]
  3. [ l , r ] → b [l, r] \rightarrow b [l,r]b

a , b , l , r ∈ [ 1 , 1 0 6 ] a, b, l, r \in [1, 10^6] a,b,l,r[1,106]

若暴力建图, 时空复杂度高达 O ( M N 2 ) O(MN^2) O(MN2),
于是 线段树优化建图 诞生了 .


  • 线 段 树 优 化 建 图 的 实 现 线段树优化建图的实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值