数列的 GCD [计数问题]

数 列 的 G C D 数列的 GCD GCD


D e s c r i p t i o n \mathcal{Description} Description


S o l u t i o n \mathcal{Solution} Solution

由于有 K K K 个位置两数列不相同, 于是 使用 { a n } \{a_n\} {an} 构造 { b n } \{b_n\} {bn},

枚举 d d d, 即假设 d d d 是已知量,
{ a n } \{a_n\} {an} x x x 个位置不能整除 d d d,
由于 条 件 2 条件2 2的限制, 这 x x x 个位置需要改变,
即至少改变 x x x个位置, 若 x > K x>K x>K, 说明无解 .

于是若存在答案, 则 x &lt; = K \color{red}{x &lt;= K} x<=K,
x x x 个位置的数要改变, 方案数为
(1) ⌊ M d ⌋ x \lfloor \frac{M}{d} \rfloor ^x \tag{1} dMx(1)
剩下还需改变 K − x K-x Kx 个位置上的数, 方案数为
(2) ( N N − x ) ∗ ⌊ M d − 1 ⌋ K − x \dbinom{N}{N-x}*\lfloor \frac{M}{d}-1 \rfloor^{K-x}\tag{2} (NxN)dM1Kx(2)

( (1) * (2) ) ∴ t m p [ d ] = ⌊ M d ⌋ x ( N N − x ) ⌊ M d − 1 ⌋ K − x \therefore tmp[d] = \lfloor \frac{M}{d} \rfloor ^x \dbinom{N}{N-x}\lfloor \frac{M}{d}-1 \rfloor^{K-x}\tag{ (1) * (2) } tmp[d]=dMx(NxN)dM1Kx( (1) * (2) )

由于 g c d gcd gcd d d d, 所以要减去 g c d gcd gcd A n s [ d ] Ans[d] Ans[d] 倍数的方案
A n s [ d ] = t m p [ d ] − t m p [ 2 d ] − t m p [ 3 d ] − . . . − t m p [ n d ] Ans[d]=tmp[d]-tmp[2d]-tmp[3d]-...-tmp[nd] Ans[d]=tmp[d]tmp[2d]tmp[3d]...tmp[nd]


C o d e   w i t h   b u g \mathcal{Code\ with\ bug} Code with bug

#include<bits/stdc++.h>
#define reg register

int read(){
        char c;
        int s = 0, flag = 1;
        while((c=getchar()) && !isdigit(c))
                if(c == '-'){ c = getchar(), flag = -1; break ; }
        while(isdigit(c)) s = s*10 + c-'0', c = getchar();
        return s * flag;
}

const int maxn = 300005;
const int mod = 1000000007;

int N;
int M;
int K;
int x;
int A[maxn];
int jc[maxn];
int rev[maxn];
int tmp[maxn];
int Ans[maxn];

int C(int n, int m){
        int fz = jc[n];
        int fm = 1ll*jc[n-m]*jc[m] % mod;
        fz = 1ll*fz*rev[fm] % mod;
        return fz;
}

int KSM(int a, int b){
        int s = 1;
        while(b){
                if(b & 1) s = 1ll*s*a % mod;
                a = 1ll*a*a % mod;
                b >>= 1;
        }
        return s;
}

void Init(){
        rev[1] = 1;
        for(reg int i = 2; i < maxn; i ++) rev[i] = ((1ll*(-mod/i) * 1ll*rev[mod%i]) %mod + mod) % mod;
        jc[0] = 1;
        for(reg int i = 1; i < maxn; i ++) jc[i] = 1ll*jc[i-1]*i % mod;
}

int main(){
        freopen("gcd.in", "r", stdin);
        freopen("gcd.out", "w", stdout);
        Init();
        N = read(); M = read(); K = read();
        for(reg int i = 1; i <= N; i ++) A[i] = read();
        for(reg int d = 1; d <= M; d ++){
                x = 0;
                for(reg int i = 1; i <= N; i ++) x += ((A[i]%d) != 0);
                if(x > K){ Ans[d] = 0; continue ; }
                int tmp_1 = KSM(M/d, x), tmp_2 = C(N, N-x), tmp_3 = KSM(M/d-1, K-x);
                tmp[d] = (1ll*tmp_1*tmp_2%mod)*1ll*tmp_3 % mod;
        }
        for(reg int d = 1; d <= M; d ++){
                Ans[d] = tmp[d];
                for(reg int i = 2; i*d <= M; i ++) Ans[d] = ((Ans[d] - tmp[i*d])%mod + mod) % mod;
                printf("%d\n", Ans[d]);
        }
        return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值